Aligning Superconducting Transition-Edge Sensors by Reflected Wave Intensity Measurement

被引:2
|
作者
Ma, Pei-Sa [1 ]
Zhang, Hong-Fan [1 ]
Zhou, Xingxiang [1 ]
机构
[1] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, CAS Key Lab Quantum Informat, Dept Opt & Opt Engn, Hefei 230026, Peoples R China
关键词
sensor alignment; detection efficiency; transition-edge sensor; DETECTOR;
D O I
10.3390/s23073495
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
It is critical to accurately align a quantum photon detector such as a superconducting transition-edge sensor (TES) to an optical fiber in order to optimize its detection efficiency. Conventionally, such alignment requires advanced infrared imaging equipment or sophisticated microfabrication. We introduce a novel technique based on the simple idea of reflected wave intensity measurement which allows to determine the boundary of the sensor and align it accurately with the fiber. By routing a light wave through an optical fiber for normal incidence on the surface of the sensor chip, and separating the reflected wave coupled back into the fiber from the input signal with a circulator, we can observe the variation in the reflected wave intensity when the beam spot of the fiber crosses the boundary between the sensor and substrate that have different reflectivity, and adjust the position of the fiber such that its output falls on the sensor. We evaluate quantitatively the precision of our alignment method, as well as the conditions that must be met to avoid photon loss caused by light beam divergence. After demonstrating the working principle of our scheme and verifying the alignment result experimentally, we employ it for efficient input signal coupling to a TES device, which is used for photon-number-resolving measurement to showcase the successful application of our alignment method in practice. Relying on only ordinary and widely used optical elements that are easy to operate and low in cost, our solution is much less demanding than conventional methods. Dramatically easier to implement and not restricted by the detection mechanism of the sensor, it is accessible to a much broader community.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Magnetically Tuned Superconducting Transition-Edge Sensors
    Sadleir, John E.
    Smith, Stephen J.
    Bandler, Simon R.
    Adams, Joseph S.
    Busch, Sarah E.
    Eckart, Megan E.
    Chervenak, James A.
    Kelley, Richard L.
    Kilbourne, Caroline A.
    Porter, Frederick S.
    Porst, Jan-Patrick
    Clem, John R.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
  • [2] On the physical origin of the superconducting transition in transition-edge sensors
    Fabrega, Lourdes
    Camon, Agustin
    Pobes, Carlos
    Strichovanec, Pavel
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (15)
  • [3] Superconducting transition-edge sensors in tomorrow physics
    Pepe, C.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2023, 46 (03):
  • [4] Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors
    Sadleir, John E.
    Smith, Stephen J.
    Bandler, Simon R.
    Chervenak, James A.
    Clem, John R.
    PHYSICAL REVIEW LETTERS, 2010, 104 (04)
  • [5] Current distribution and transition width in superconducting transition-edge sensors
    Swetz, D. S.
    Bennett, D. A.
    Irwin, K. D.
    Schmidt, D. R.
    Ullom, J. N.
    APPLIED PHYSICS LETTERS, 2012, 101 (24)
  • [6] Conclusive quantum steering with superconducting transition-edge sensors
    Devin H. Smith
    Geoff Gillett
    Marcelo P. de Almeida
    Cyril Branciard
    Alessandro Fedrizzi
    Till J. Weinhold
    Adriana Lita
    Brice Calkins
    Thomas Gerrits
    Howard M. Wiseman
    Sae Woo Nam
    Andrew G. White
    Nature Communications, 3
  • [7] Conclusive quantum steering with superconducting transition-edge sensors
    Smith, Devin H.
    Gillett, Geoff
    de Almeida, Marcelo P.
    Branciard, Cyril
    Fedrizzi, Alessandro
    Weinhold, Till J.
    Lita, Adriana
    Calkins, Brice
    Gerrits, Thomas
    Wiseman, Howard M.
    Nam, Sae Woo
    White, Andrew G.
    NATURE COMMUNICATIONS, 2012, 3
  • [8] Transition-edge sensors
    Irwin, KD
    Hilton, GC
    CRYOGENIC PARTICLE DETECTION, 2005, 99 : 63 - 149
  • [9] A model for excess Johnson noise in superconducting transition-edge sensors
    Wessels, Abigail
    Morgan, Kelsey
    Gard, Johnathon D.
    Hilton, Gene C.
    Mates, John A. B.
    Reintsema, Carl D.
    Schmidt, Daniel R.
    Swetz, Daniel S.
    Ullom, Joel N.
    Vale, Leila R.
    Bennett, Douglas A.
    APPLIED PHYSICS LETTERS, 2021, 118 (20)
  • [10] Characterization and reduction of unexplained noise in superconducting transition-edge sensors
    Ullom, JN
    Doriese, WB
    Hilton, GC
    Beall, JA
    Deiker, S
    Duncan, WD
    Ferreira, L
    Irwin, KD
    Reintsema, CD
    Vale, LR
    APPLIED PHYSICS LETTERS, 2004, 84 (21) : 4206 - 4208