An algorithm for conditional-fault local diagnosis of multiprocessor systems under the MM∗ model

被引:0
|
作者
Lv, Yali [1 ]
Lin, Cheng-Kuan [2 ,3 ,4 ]
Hsu, D. Frank [5 ]
Fan, Jianxi [6 ]
机构
[1] Henan Univ Chinese Med, Sch Informat Technol, Zhengzhou, Peoples R China
[2] Natl Yang Ming Chiao Tung Univ, Dept Comp Sci, Hsinchu, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Undergrad Degree Program Syst Engn & Technol, Hsinchu, Taiwan
[4] NDU, Chung Cheng Inst Technol, Comp Sci & Informat Engn, Taoyuan, Taiwan
[5] Fordham Univ, Dept Comp & Informat Sci, Bronx, NY USA
[6] Soochow Univ, Sch Comp Sci & Technol, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
MM* model; Conditional diagnosis; Local diagnosability; Diagnosis algorithm; DIAGNOSABILITY; PMC; NETWORK; GRAPHS;
D O I
10.1016/j.tcs.2023.114372
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Diagnosis is a crucial subject for maintaining the reliability of multiprocessor systems. Under the MM* diagnosis model, Sengupta and Dahbura proposed a polynomial-time algorithm with time complexity O(N5) to diagnose a system with N processors. In this paper, we propose a (a, fl)-trees combination S(u, X, a, fl) and give an algorithm to identify the fault or fault-free status of each processor for conditional local diagnosis under the MM* model. According to our results, a connected network with a (a, fl)-trees combination S(u, X, a, fl) for a node u is conditionally locally (a + 2fl - 3)-diagnosable at node u and the time complexity of our algorithm to diagnose u is O(a2fl + afl2). As an application, we show that our algorithm can identify the status of each node of n-dimensional star graph Sn if the faulty node number does not exceed 3n - 8. Compared with existing algorithms, our algorithm allows more faulty nodes in a multiprocessor system.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Conditional-Fault Diagnosability of Multiprocessor Systems with an Efficient Local Diagnosis Algorithm under the PMC Model
    Lin, Cheng-Kuan
    Kung, Tzu-Liang
    Tan, Jimmy J. M.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2011, 22 (10) : 1669 - 1680
  • [2] An Algorithmic Approach to Conditional-Fault Local Diagnosis of Regular Multiprocessor Interconnected Systems under the PMC Model
    Lin, Cheng-Kuan
    Kung, Tzu-Liang
    Tan, Jimmy J. M.
    IEEE TRANSACTIONS ON COMPUTERS, 2013, 62 (03) : 439 - 451
  • [3] FFNLFD: Fault Diagnosis of Multiprocessor Systems at Local Node With Fault-Free Neighbors Under PMC Model and MM* Model
    Lin, Limei
    Huang, Yanze
    Lin, Yuhang
    Hsieh, Sun-Yuan
    Xu, Li
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (07) : 1739 - 1751
  • [4] Measurement and algorithm for conditional local diagnosis of regular networks under the MM* model
    Yuan, Jun
    Qiao, Huijuan
    Liu, Aixia
    Wang, Xi
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 46 - 67
  • [5] A fast diagnosis algorithm for locally twisted cube multiprocessor systems under the MM* model
    Yang, Hui
    Yang, Xiaofan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (06) : 918 - 926
  • [6] Fault-Tolerant Bipancyclicity of Faulty Hypercubes Under the Generalized Conditional-Fault Model
    Chang, Nai-Wen
    Hsieh, Sun-Yuan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (12) : 3400 - 3409
  • [7] Local Diagnosis Algorithms for Multiprocessor Systems Under the Comparison Diagnosis Model
    Lin, Cheng-Kuan
    Teng, Yuan-Hsiang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    IEEE TRANSACTIONS ON RELIABILITY, 2013, 62 (04) : 800 - 810
  • [8] Fault-tolerant edge-bipancyclicity of faulty hypercubes under the conditional-fault model
    Yang, Da-Wei
    Feng, Yan-Quan
    Kwak, Jin Ho
    Zhou, Jin-Xin
    INFORMATION SCIENCES, 2016, 329 : 317 - 328
  • [9] MULTIPROCESSOR FAULT-DIAGNOSIS UNDER LOCAL CONSTRAINTS
    DAS, A
    THULASIRAMAN, K
    AGARWAL, VK
    LAKSHMANAN, KB
    IEEE TRANSACTIONS ON COMPUTERS, 1993, 42 (08) : 984 - 988
  • [10] A tree structure for local diagnosis in multiprocessor systems under the comparison model
    Chen, Meirun
    Lin, Cheng-Kuan
    Pai, Kung-Jui
    THEORETICAL COMPUTER SCIENCE, 2024, 992