Learning Sub-Pixel Disparity Distribution for Light Field Depth Estimation

被引:1
|
作者
Chao, Wentao [1 ]
Wang, Xuechun [1 ]
Wang, Yingqian [2 ]
Wang, Guanghui [3 ]
Duan, Fuqing [1 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
[2] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
[3] Toronto Metropolitan Univ, Dept Comp Sci, Toronto, ON M5B 2K3, Canada
关键词
Light field; depth estimation; disparity distribution; sub-pixel cost volume;
D O I
10.1109/TCI.2023.3336184
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Light field (LF) depth estimation plays a crucial role in many LF-based applications. Existing LF depth estimation methods consider depth estimation as a regression problem, where a pixel-wise L1 loss is employed to supervise the training process. However, the disparity map is only a sub-space projection (i.e., an expectation) of the disparity distribution, which is essential for models to learn. In this paper, we propose a simple yet effective method to learn the sub-pixel disparity distribution by fully utilizing the power of deep networks, especially for LF of narrow baselines. We construct the cost volume at the sub-pixel level to produce a finer disparity distribution and design an uncertainty-aware focal loss to supervise the predicted disparity distribution toward the ground truth. Extensive experimental results demonstrate the effectiveness of our method. Our method significantly outperforms recent state-of-the-art LF depth algorithms on the HCI 4D LF Benchmark in terms of all four accuracy metrics (i.e., BadPix 0.01, BadPix 0.03, BadPix 0.07, and MSE x100).
引用
收藏
页码:1126 / 1138
页数:13
相关论文
共 50 条
  • [1] Sub-pixel Disparity Estimation in Continuous Space
    Chen, Li-De
    Yu, Jo-Jiun
    Cheng, Wei-Han
    Huang, Chao-Tsung
    2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2015, : 114 - 115
  • [2] ROBUST SUB-PIXEL DISPARITY ESTIMATION AND ITS REFINEMENT AROUND DEPTH DISCONTINUITY AND FEATURELESS AREAS
    Yan, Hongshi
    Liu, Jian-Guo
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4576 - 4579
  • [3] Sub-pixel disparity search for binocular stereo vision
    Mizukami, Yoshiki
    Okada, Koichi
    Nomura, Atsushi
    Nakanishi, Shinya
    Tadamura, Katsumi
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 364 - 367
  • [4] Analysis of sub-pixel motion estimation
    Bellers, EB
    de Haan, G
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1452 - 1463
  • [5] The effect of sub-pixel areal distribution of snow on the estimation of snow depth from spaceborne passive microwave instruments
    Kelly, REJ
    Chang, ATC
    Foster, JL
    Hall, DK
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2834 - 2834
  • [6] A Sub-pixel Disparity Refinement Algorithm Based on Lagrange Interpolation
    Men Yubo
    Zhang Guoyin
    Men Chaoguang
    Li Xiang
    Ma Ning
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (04) : 784 - 789
  • [7] A Sub-pixel Disparity Refinement Algorithm Based on Lagrange Interpolation
    MEN Yubo
    ZHANG Guoyin
    MEN Chaoguang
    LI Xiang
    MA Ning
    Chinese Journal of Electronics, 2017, 26 (04) : 784 - 789
  • [8] Sub-pixel motion estimation for terahertz imaging
    Wan, Min
    Duignan, Christopher
    Cassidy, Derek
    Healy, John J.
    Sheridan, John T.
    TERAHERTZ, RF, MILLIMETER, AND SUBMILLIMETER-WAVE TECHNOLOGY AND APPLICATIONS XIII, 2020, 2020, 11279
  • [9] Compensating for sub-pixel shift in motion estimation
    Konstantoudakis, Konstantinos
    Machairidou, Elpida
    Papanikolaou, George
    MOCO'16: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON MOVEMENT AND COMPUTING, 2016,
  • [10] Sub-pixel Bayesian estimation of albedo and height
    Shekarforoush, H
    Berthod, M
    Zerubia, J
    Werman, M
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 1996, 19 (03) : 289 - 300