Deep domain-invariant learning for facial age estimation

被引:3
|
作者
Bao, Zenghao [1 ,2 ,3 ]
Luo, Yutian [4 ]
Tan, Zichang [1 ,2 ,3 ]
Wan, Jun [1 ,2 ,3 ]
Ma, Xibo [1 ,2 ,3 ]
Lei, Zhen [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Automat, CBSR, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Automat, NLPR, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Macau Univ Sci & Technol, Macau, Peoples R China
关键词
Deep learning; Facial age estimation; Domain generalization;
D O I
10.1016/j.neucom.2023.02.037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Previous studies in facial age estimation can achieve promising performance when the training and test sets have a similar condition. However, these methods often fail to maintain performance and show sig-nificant degradation when encountering unseen domains. Therefore, we propose a novel method named Deep Domain-Invariant Learning (DDIL) to solve the Out-of-Distribution (OOD) generalization problem for facial age estimation. The proposed DDIL consists of the domain-invariant and style-invariant mod-ules. The former extracts domain-specific features and trains a domain-invariant feature extractor by reducing the covariance discrepancy among features from different domains, while the latter leverages style randomization to overcome CNN's induction bias towards styles. Consolidating these two modules, our DDIL can effectively decrease the influence of domain discrepancy. Extensive experiments on multi-ple age benchmark datasets under the Leave-One-Domain-Out Cross-Validation setting indicate superior performance in tackling age estimation generalization.(c) 2023 Published by Elsevier B.V.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 50 条
  • [31] Automatic Seizure Classification Based on Domain-Invariant Deep Representation of EEG
    Cao, Xincheng
    Yao, Bin
    Chen, Binqiang
    Sun, Weifang
    Tan, Guowei
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [32] DOMAIN-INVARIANT FEATURE LEARNING FOR CROSS CORPUS SPEECH EMOTION RECOGNITION
    Gao, Yuan
    Okada, Shogo
    Wang, Longbiao
    Liu, Jiaxing
    Dang, Jianwu
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 6427 - 6431
  • [33] DFIL: Deepfake Incremental Learning by Exploiting Domain-invariant Forgery Clues
    Pan, Kun
    Yin, Yifang
    Wei, Yao
    Lin, Feng
    Ba, Zhongjie
    Liu, Zhenguang
    Wang, Zhibo
    Cavallaro, Lorenzo
    Ren, Kui
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 8035 - 8046
  • [34] Domain-invariant feature learning with label information integration for cross-domain classification
    Jiang L.
    Wu J.
    Zhao S.
    Li J.
    Neural Computing and Applications, 2024, 36 (21) : 13107 - 13126
  • [35] Answering Spatial Commonsense Questions by Learning Domain-Invariant Generalization Knowledge
    Lin, Miaopei
    Yu, Jianxing
    Wang, Shiqi
    Lai, Hanjiang
    Liu, Wei
    Yin, Jian
    WEB AND BIG DATA, PT II, APWEB-WAIM 2023, 2024, 14332 : 270 - 285
  • [36] ContrastSense: Domain-invariant Contrastive Learning for In-the-Wild Wearable Sensing
    Dai, Gaole
    Xu, Huatao
    Yoon, Hyungun
    Li, Mo
    Tan, Rui
    Lee, Sung-Ju
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2024, 8 (04):
  • [37] Learning a Domain-Invariant Embedding for Unsupervised Person Re-identification
    Pu, Nan
    Georgiou, T. K.
    Bakker, Erwin M.
    Lew, Michael S.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [38] Enhancing Domain-Invariant Parts for Generalized Zero-Shot Learning
    Zhang, Yang
    Feng, Songhe
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6283 - 6291
  • [39] Domain-Invariant Prototypes for Semantic Segmentation
    Yang, Zhengeng
    Yu, Hongshan
    Sun, Wei
    Cheng, Li
    Mian, Ajmal
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7614 - 7627
  • [40] Support and Invertibility in Domain-Invariant Representations
    Johansson, Fredrik D.
    Sontag, David
    Ranganath, Rajesh
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 527 - 536