MODIFIED REFINEMENT ALGORITHM TO CONSTRUCT LYAPUNOV FUNCTIONS USING MESHLESS COLLOCATION

被引:0
|
作者
Mohammed, Najla [1 ]
Giesl, Peter [2 ]
机构
[1] Umm Al Qura Univ, Dept Math Sci, Mecca, Saudi Arabia
[2] Univ Sussex, Dept Math, Brighton BN1 9QH, England
来源
JOURNAL OF COMPUTATIONAL DYNAMICS | 2023年 / 10卷 / 01期
关键词
Differential equation; Lyapunov function; basin of attraction; meshfree collocation; refinement;
D O I
10.3934/jcd.2022022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lyapunov functions are functions with negative derivative along solutions of a given ordinary differential equation. Moreover, sublevel sets of a Lyapunov function are subsets of the domain of attraction of the equilib-rium. One of the numerical construction methods for Lyapunov functions uses meshless collocation with radial basis functions.Recently, this method was combined with a grid refinement algorithm (GRA) to reduce the number of collocation points needed to construct Lyapunov func-tions. However, depending on the choice of the initial set of collocation point, the algorithm can terminate, failing to compute a Lyapunov function. In this paper, we propose a modified grid refinement algorithm (MGRA), which over-comes these shortcomings by adding appropriate collocation points using a clustering algorithm. The modified algorithm is applied to two-and three-dimensional examples.
引用
收藏
页码:127 / 151
页数:25
相关论文
共 50 条
  • [1] Construction of Finsler-Lyapunov functions with meshless collocation
    Giesl, Peter
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (04):
  • [2] Using Lyapunov Functions to Construct Lyapunov Functionals for Delay Differential Equations
    McCluskey, C. Connell
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (01): : 1 - 24
  • [3] CONSTRUCTION OF A FINITE-TIME LYAPUNOV FUNCTION BY MESHLESS COLLOCATION
    Giesl, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (07): : 2387 - 2412
  • [4] On condition number of meshless collocation method using radial basis functions
    Duan, Y
    Tan, YJ
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) : 141 - 147
  • [5] VERIFICATION ESTIMATES FOR THE CONSTRUCTION OF LYAPUNOV FUNCTIONS USING MESHFREE COLLOCATION
    Giesl, Peter
    Mohammed, Najla
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (09): : 4955 - 4981
  • [6] Adaptive meshless refinement schemes for RBF-PUM collocation
    Cavoretto, R.
    De Rossi, A.
    APPLIED MATHEMATICS LETTERS, 2019, 90 : 131 - 138
  • [7] GRID REFINEMENT IN THE CONSTRUCTION OF LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS
    Mohammed, Najla
    Giesl, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (08): : 2453 - 2476
  • [8] Convergence order estimates of meshless collocation methods using radial basis functions
    Franke, C
    Schaback, R
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 8 (04) : 381 - 399
  • [9] Convergence order estimates of meshless collocation methods using radial basis functions
    Carsten Franke
    Robert Schaback
    Advances in Computational Mathematics, 1998, 8 : 381 - 399
  • [10] Meshless methods based on collocation with radial basis functions
    Zhang, X
    Song, KZ
    Lu, MW
    Liu, X
    COMPUTATIONAL MECHANICS, 2000, 26 (04) : 333 - 343