CENTRAL LIMIT THEOREMS FOR RANDOM MULTIPLICATIVE FUNCTIONS

被引:1
|
作者
Soundararajan, Kannan [1 ]
Xu, Max Wenqiang [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2023年 / 151卷 / 01期
基金
美国国家科学基金会;
关键词
SUMS;
D O I
10.1007/s11854-023-0331-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Steinhaus random multiplicative function f is a completely multiplicative function obtained by setting its values on primes f (p) to be independent random variables distributed uniformly on the unit circle. Recent work of Harper shows that Sigma(n <= N) f (n) exhibits "more than square-root cancellation," and in particular 1/root N Sigma(n <= N) f (n) does not have a (complex) Gaussian distribution. This paper studies Sigma(n is an element of A) f(n), where A is a subset of the integers in [1, N], and produces several new examples of sets A where a central limit theorem can be established. We also consider more general sums such as Sigma(n <= N) f (n)e(2 pi in)theta, where we show that a central limit theorem holds for any irrational theta that does not have extremely good Diophantine approximations.
引用
收藏
页码:343 / 374
页数:32
相关论文
共 50 条
  • [1] Central limit theorems for random multiplicative functions
    Kannan Soundararajan
    Max Wenqiang Xu
    Journal d'Analyse Mathématique, 2023, 151 : 343 - 374
  • [2] Almost sure central limit theorems for random functions
    Chuanrong Lu
    Jin Qiu
    Jianjun Xu
    Science in China Series A: Mathematics, 2006, 49 : 1788 - 1799
  • [3] Almost sure central limit theorems for random functions
    Lu Chuanrong
    Qiu Jin
    Xu Jianjun
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (12): : 1788 - 1799
  • [4] Almost sure central limit theorems for random functions
    LU Chuanrong
    Department of Mathematics
    Science China Mathematics, 2006, (12) : 1788 - 1799
  • [5] Limit theorems for random symmetric functions
    Michaletzky Gy.
    Szeidl L.
    Journal of Mathematical Sciences, 1998, 89 (5) : 1507 - 1516
  • [6] Limit theorems for iterated random functions
    Wu, WB
    Shao, XF
    JOURNAL OF APPLIED PROBABILITY, 2004, 41 (02) : 425 - 436
  • [7] Central limit theorems for random polytopes
    Matthias Reitzner
    Probability Theory and Related Fields, 2005, 133 : 483 - 507
  • [8] RANDOM CENTRAL LIMIT THEOREMS FOR MARTINGALES
    RAO, BLS
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1969, 20 (1-2): : 217 - &
  • [9] Central limit theorems for random polytopes
    Reitzner, M
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (04) : 483 - 507
  • [10] CENTRAL LIMIT THEOREMS FOR RANDOM WALKS ASSOCIATED WITH HYPERGEOMETRIC FUNCTIONS OF TYPE BC
    Artykov, Merdan
    Voit, Michael
    COLLOQUIUM MATHEMATICUM, 2021, 163 (01) : 89 - 112