We prove that every 2-solvable Frobenius Lie algebra splits as a semidirect sum of an n-dimensional vector space V and an n-dimensional maximal Abelian subalgebra (MASA) of the full space of endomorphisms of V. We supply a complete classification of 2-solvable Frobenius Lie algebras corresponding to nonderogatory endomorphisms, as well as those given by maximal Abelian nilpotent subalgebras (MANS) of class 2, hence of Kravchuk signature (n 1, 0, 1). In low dimensions, we classify all 2-solvable Frobenius Lie algebras in general up to dimension 8. We correct and complete the classification list of MASAs of sl(4, R) by Winternitz and Zassenhaus. As a biproduct, we give a simple proof that every nonderogatory endormorphism of a real vector space admits a Jordan form and also provide a new characterization of Cartan subalgebras of sl(n, R).