Enhancing anomaly detectors with LatentOut

被引:2
|
作者
Angiulli, Fabrizio [1 ]
Fassetti, Fabio [1 ]
Ferragina, Luca [1 ]
机构
[1] Unical, DIMES Dept, via P Bucci 41C, I-87036 Arcavacata Di Rende, CS, Italy
关键词
Anomaly detection; Variational autoencode; Generative adversarial network; SUPPORT;
D O I
10.1007/s10844-023-00829-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Latent Out is a recently introduced algorithm for unsupervised anomaly detection which enhances latent space-based neural methods, namely (Variational) Autoencoders, GANomaly and ANOGan architectures. The main idea behind it is to exploit both the latent space and the baseline score of these architectures in order to provide a refined anomaly score performing density estimation in the augmented latent-space/baseline-score feature space. In this paper we investigate the performance of Latent Out acting as a one-class classifier and we experiment the combination of Latent Out with GAAL architectures, a novel type of Generative Adversarial Networks for unsupervised anomaly detection. Moreover, we show that the feature space induced by Latent Out has the characteristic to enhance the separation between normal and anomalous data. Indeed, we prove that standard data mining outlier detection methods perform better when applied on this novel augmented latent space rather than on the original data space.
引用
收藏
页码:905 / 923
页数:19
相关论文
共 50 条
  • [1] ANOMALY IN RESPONSE OF SEMICONDUCTOR DETECTORS
    DODGE, WR
    DOMEN, SR
    HOPPES, DD
    HIRSHFELD, AT
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1964, NS11 (03) : 238 - +
  • [2] GENERATIVE AND ENCODED ANOMALY DETECTORS
    Emerson, Tegan H.
    Edelberg, Jason A.
    Doster, Timothy
    Merrill, Nicholas
    Olson, Colin C.
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [3] A quest for better anomaly detectors
    Soleymani, Mehdi
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2020, 12 (04) : 447 - 458
  • [4] Enhancing THz detectors
    不详
    R&D MAGAZINE, 2006, 48 (11): : 40 - 40
  • [5] Efficient Nonlinear RX Anomaly Detectors
    Padron Hidalgo, Jose A.
    Perez-Suay, Adrian
    Nar, Fatih
    Camps-Valls, Gustau
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (02) : 231 - 235
  • [6] A FAMILY OF KERNEL ANOMALY CHANGE DETECTORS
    Longbotham, Nathan
    Camps-Valls, Gustavo
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [7] The need for simulation in evaluating anomaly detectors
    Ringberg, Haakon
    Roughan, Matthew
    Rexford, Jennifer
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2008, 38 (01) : 55 - 59
  • [8] Comparison of Anomaly Detectors: Context Matters
    Skvara, Vit
    Francu, Jan
    Zorek, Matej
    Pevny, Tomas
    Smidl, Vaclav
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2494 - 2507
  • [9] A method for testing distributed anomaly detectors
    Sugumar, Gayathri
    Mathur, Aditya
    INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURE PROTECTION, 2019, 27
  • [10] Hyperspectral Anomaly Detectors Using Robust Estimators
    Frontera-Pons, Joana
    Veganzones, Miguel Angel
    Pascal, Frederic
    Ovarlez, Jean-Philippe
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (02) : 720 - 731