FOREST AGB ESTIMATION USING L-BAND POLARIMETRIC SAR FEATURES

被引:0
|
作者
Wang, Mengjin [1 ]
Marino, Armando [2 ]
Zhang, Wangfei [1 ]
Shi, Jianmin [1 ]
Zhao, Han [1 ]
Ji, Yongjie [3 ]
机构
[1] Southwest Forestry Univ, Coll Forestry, Kunming, Yunnan, Peoples R China
[2] Univ Stirling, Biol & Environm Sci, Stirling FK9 4LA, Scotland
[3] Southwest Forestry Univ, Sch Geog & Ecotourism, Kunming 650224, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
PolSAR; aboveground biomass; L-band;
D O I
10.1109/IGARSS52108.2023.10281619
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Forest biomass plays an essential role in forest carbon reservoir studies, biodiversity protection, forest management, and climate change mitigation actions. Currently, polarisation information shows great potential for reducing saturation problems and improving estimation accuracy. 137 SAR features including backscatter coefficients, texture characteristics and features extracted from H/A/a decomposition and so on 9 decomposition methods were extracted for L-band airborne PolSAR data at two test sites, respectively for forest L-band scattering mechanisms analysis and AGB estimation. A multiple linear stepwise regression ( MSLR) model and a fast iterative feature selection for K-nearest neighbor (KNN-FIFS) method are used to estimate the forest AGB at the two test sites. In the present study, there was evident site dependence of the Lband forest scattering mechanisms, while KNN-FIFS performed better in the estimation of forest AGB. The best AGB estimation was acquired at the Hainan test site with RMSE = 28.88 t/ha and rRMSE = 18.46%.
引用
收藏
页码:8074 / 8077
页数:4
相关论文
共 50 条
  • [1] THE EFFECT OF FOREST FOLIAGE ON L-BAND POLARIMETRIC SAR DATA
    Kimura, Hiroshi
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5875 - 5878
  • [2] Forest Total and Component Above-Ground Biomass (AGB) Estimation through C- and L-band Polarimetric SAR Data
    Zeng, Peng
    Zhang, Wangfei
    Li, Yun
    Shi, Jianmin
    Wang, Zhanhui
    [J]. FORESTS, 2022, 13 (03):
  • [3] Tree height estimation using an airborne L-band polarimetric interferometric SAR
    Shimada, M
    Multhar, Q
    Tadono, T
    Wakabayashi, H
    [J]. IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1430 - 1432
  • [4] Estimation of snow density with L-band polarimetric SAR data
    Li, Z
    Guo, HD
    Shi, JC
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1757 - 1759
  • [5] Coniferous and Broad-Leaved Forest Distinguishing Using L-Band Polarimetric SAR Data
    Shang, Fang
    Saito, Taiga
    Ohi, Saya
    Kishi, Naoto
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7487 - 7499
  • [6] ESTIMATION OF FOREST BIOMASS FROM L-BAND POLARIMETRIC DECOMPOSITION COMPONENTS
    Tanase, Mihai A.
    Panciera, Rocco
    Lowell, Kim
    Hacker, Jorg
    Walker, Jeffrey P.
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 949 - 952
  • [7] Forest biomass retrieval using L-band polarimetric measurements
    Delbart, N
    Melon, P
    Florsch, G
    Le Toan, T
    Martinez, JM
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1789 - 1791
  • [8] Forest Height Estimation Using a Single-Pass Airborne L-Band Polarimetric and Interferometric SAR System and Tomographic Techniques
    Huang, Yue
    Zhang, Qiaoping
    Ferro-Famil, Laurent
    [J]. REMOTE SENSING, 2021, 13 (03) : 1 - 20
  • [9] Building characterization using L-band polarimetric interferometric SAR data
    Guillaso, S
    Ferro-Famil, L
    Reigber, A
    Pottier, E
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2005, 2 (03) : 347 - 351
  • [10] POLARIMETRIC FEATURES ANALYSIS OF OIL SPILLS IN C-BAND AND L-BAND SAR IMAGES
    Zheng, Honglei
    Zhang, Yanmin
    Wang, Yunhua
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4683 - 4686