Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Bidirectional Long Short-Term Memory Networks

被引:4
|
作者
Wang, Bipeng [1 ]
Winkler, Ludwig [2 ]
Wu, Yifan [3 ]
Muller, Klaus-Robert [2 ,4 ,5 ,6 ,7 ]
Sauceda, Huziel E. [8 ,9 ]
Prezhdo, Oleg V. [1 ,3 ]
机构
[1] Univ Southern Calif, Dept Chem Engn, Los Angeles, CA 90089 USA
[2] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[3] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
[4] Berlin Inst Fdn Learning & Data, BIFOLD, D-10587 Berlin, Germany
[5] Korea Univ, Dept Artificial Intelligence, Seoul 136713, South Korea
[6] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
[7] Google Deepmind, D-10587 Berlin, Germany
[8] Tech Univ Berlin, BASF TU joint Lab, BASLEARN, D-10587 Berlin, Germany
[9] Univ Nacl Autonoma Mexico, Mexico City 01000, DF, Mexico
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 31期
基金
美国国家科学基金会;
关键词
TOTAL-ENERGY CALCULATIONS; PYXAID PROGRAM; LOCALIZATION; SCHEMES;
D O I
10.1021/acs.jpclett.3c01723
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Essential for understandingfar-from-equilibrium processes,nonadiabatic(NA) molecular dynamics (MD) requires expensive calculations of theexcitation energies and NA couplings. Machine learning (ML) can simplify computation; however, the NA Hamiltonian requires complex ML modelsdue to its intricate relationship to atomic geometry. Working directlyin the time domain, we employ bidirectional long short-term memorynetworks (Bi-LSTM) to interpolate the Hamiltonian. Applying this multiscaleapproach to three metal-halide perovskite systems, we achieve twoorders of magnitude computational savings compared to direct ab initiocalculation. Reasonable charge trapping and recombination times areobtained with NA Hamiltonian sampling every half a picosecond. TheBi-LSTM-NAMD method outperforms earlier models and captures both slowand fast time scales. In combination with ML force fields, the methodologyextends NAMD simulation times from picoseconds to nanoseconds, comparableto charge carrier lifetimes in many materials. Nanosecond samplingis particularly important in systems containing defects, boundaries,interfaces, etc. that can undergo slow rearrangements.
引用
收藏
页码:7092 / 7099
页数:8
相关论文
共 50 条
  • [1] Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks
    Wang, Bipeng
    Chu, Weibin
    Tkatchenko, Alexandre
    Prezhdo, Oleg, V
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (26): : 6070 - 6077
  • [2] CCG supertagging with bidirectional long short-term memory networks
    Kadari, Rekia
    Zhang, Yu
    Zhang, Weinan
    Liu, Ting
    [J]. NATURAL LANGUAGE ENGINEERING, 2018, 24 (01) : 77 - 90
  • [3] Molecular Design With Long Short-Term Memory Networks
    Grisoni, Francesca
    Schneider, Gisbert
    [J]. JOURNAL OF COMPUTER AIDED CHEMISTRY, 2019, 20 : 35 - 42
  • [4] FORECASTING STOCK MARKET DYNAMICS USING BIDIRECTIONAL LONG SHORT-TERM MEMORY
    PARK, Daehyeon
    RYU, Doojin
    [J]. ROMANIAN JOURNAL OF ECONOMIC FORECASTING, 2021, 24 (02): : 22 - 34
  • [5] A sentiment analysis method based on bidirectional long short-term memory networks
    Zhang, Haifei
    Xu, Jian
    Lei, Liting
    Qiu Jianlin
    Alshalabi, Riyad
    [J]. APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2023, 8 (01) : 55 - 68
  • [6] Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Inverse Fast Fourier Transform
    Wang, Bipeng
    Chu, Weibin
    Prezhdo, Oleg, V
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (01): : 331 - 338
  • [7] Hierarchical Bidirectional Long Short-Term Memory Networks for Chinese Messaging Spam Filtering
    Shao, Wenliang
    Zhang, Chunhong
    Sun, Tingting
    Li, Hang
    Ji, Yang
    Qiu, Xiaofeng
    [J]. 2017 3RD INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM), 2017, : 158 - 164
  • [8] Bidirectional Long Short-Term Memory Networks for predicting the subcellular localization of eukaryotic proteins
    Thireou, Trias
    Reczko, Martin
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2007, 4 (03) : 441 - 446
  • [9] BIDIRECTIONAL QUATERNION LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORKS FOR SPEECH RECOGNITION
    Parcollet, Titouan
    Morchid, Mohamed
    Linares, Georges
    De Mori, Renato
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8519 - 8523
  • [10] Recognition of ships based on vector sensor and bidirectional long short-term memory networks
    Li, Sichun
    Yang, Shuyu
    Liang, Jinghan
    [J]. APPLIED ACOUSTICS, 2020, 164