Temperature optimization of NiO hole transport layer prepared by atomic layer deposition

被引:9
|
作者
Farva, Umme [1 ]
Kim, Jeha [1 ]
机构
[1] Cheongju Univ, Dept Energy Convergence Engn, Cheongju 28505, South Korea
关键词
Atomic layer deposition; Substrate temperature; NiO thin Film; Chemical composition; Optical transmittance; Electrical properties; RAY PHOTOELECTRON-SPECTROSCOPY; NICKEL-OXIDE; THIN-FILMS; HIGHLY EFFICIENT; PROGRESS; ENERGY; STATE;
D O I
10.1016/j.vacuum.2022.111674
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Atomic layer deposited (ALD) nickel oxide (NiO) thin film is frequently utilized as a hole transport layer (HTL) for perovskite solar cells (PSCs). Particularly nickel(II) 1-dimethylamino-2-methyl-2-butoxide (Ni(dmamb)2) precursor and ozone reactant are used for NiO film deposition. The substrate temperature effect on the stoi-chiometric composition for oxygen vacancies defects and electrical properties such as mobility is crucial, affecting further device performance. In the present study, NiO thin films are grown using the ALD method at a substrate temperature range between 180 to 250 degrees C on SiO2/Si substrates. Next, the effect of substrate tem-perature on the film composition, valence levels, nickel oxidation states, oxygen vacancies, and electrical properties was systematically examined, not to mention film growth, thickness, morphology, crystallinity, and optical properties. At 180 degrees C, the film growth rate was 0.017 nm/cycle, which was increased to 0.025 nm/cycle at 250 degrees C. All grown NiO films exhibited polycrystalline cubic crystal orientation, and the (200) plane simul-taneously Ni3+ phase coexists with the Ni2+ phase. Furthermore, the electrical resistivity and mobility increased from 2.36 - 3.24 x 102 omega.cm and 9.6-21.9 cm2V- -1 with substrate temperatures of 180 degrees C-230 degrees C. The prepared NiO films were optically transparent, >70% in the visible region, and the Ultraviolet photoelectron spectroscopy (UPS) study revealed that the variation in the valance band and conduction bands critically depended on the growth temperature. Thus, our findings reveal that the chemical and electrical characteristics of deposited NiO thin film are precisely influenced by substrate temperature; it will also offer considerable promise for developing NiO HTL concerning PSCs device improvement.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Electrochromic properties of NiO films prepared by atomic layer deposition
    Su, Xi
    Tu, Zexin
    Ji, Liwei
    Wu, Hao
    Xu, Hongxing
    Liu, Chang
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2023, 41 (06):
  • [2] Solvation of NiO x for hole transport layer deposition in perovskite solar cells
    Armstrong, Peter J.
    Chandrasekhar, P. S.
    Chapagain, Sashil
    Cline, Carmen M.
    van Hest, Maikel F. A. M.
    Druffel, Thad
    Grapperhaus, Craig A.
    NANOTECHNOLOGY, 2022, 33 (06)
  • [3] Atomic layer deposition of NiO hole-transporting layers for polymer solar cells
    Hsu, Che-Chen
    Su, Heng-Wei
    Hou, Cheng-Hung
    Shyue, Jing-Jong
    Tsai, Feng-Yu
    NANOTECHNOLOGY, 2015, 26 (38)
  • [4] Low temperature, area-selective atomic layer deposition of NiO and Ni
    Nallan, Himamshu C.
    Yang, Xin
    Coffey, Brennan M.
    Ekerdt, John G.
    Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40 (06):
  • [5] Low temperature, area-selective atomic layer deposition of NiO and Ni
    Nallan, Himamshu C.
    Yang, Xin
    Coffey, Brennan M.
    Ekerdt, John G.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2022, 40 (06):
  • [6] Hole transport in conducting ultrathin films of PEDOT/PSS prepared by layer-by-layer deposition technique
    Wakizaka, D
    Fushimi, T
    Ohkita, H
    Ito, S
    POLYMER, 2004, 45 (25) : 8561 - 8565
  • [7] Polymer solar cells with NiO hole-collecting interlayers processed by atomic layer deposition
    Shim, Jae Won
    Fuentes-Hernandez, Canek
    Dindar, Amir
    Zhou, Yinhua
    Khan, Talha M.
    Kippelen, Bernard
    ORGANIC ELECTRONICS, 2013, 14 (11) : 2802 - 2808
  • [8] Epitaxial NiO (100) and NiO (111) films grown by atomic layer deposition
    Lindahl, E.
    Lu, J.
    Ottosson, M.
    Carlsson, J. -O.
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (16) : 4082 - 4088
  • [9] The Effect of Deposition Temperature on TiN Thin Films for the Electrode Layer of 3D Capacitors Prepared by Atomic Layer Deposition
    Chen, Xingyu
    Zhang, Jing
    Gao, Lingshan
    Zhang, Faqiang
    Ma, Mingsheng
    Liu, Zhifu
    COATINGS, 2024, 14 (06)
  • [10] A transport and reaction model for atomic layer deposition
    Prasad, V
    Gobbert, MK
    Cale, TS
    ADVANCED METALLIZATION CONFERENCE 2001 (AMC 2001), 2001, : 399 - 403