Is the field of organic thermoelectrics stuck?

被引:4
|
作者
Brunetti, Irene [1 ,2 ,3 ]
Dash, Aditya [1 ]
Scheunemann, Dorothea [1 ]
Kemerink, Martijn [1 ]
机构
[1] Heidelberg Univ, Inst Mol Syst Engn & Adv Mat, Neuenheimer Feld 225, D-69120 Heidelberg, Germany
[2] InnovationLab, Speyererstr 4, D-69115 Heidelberg, Germany
[3] Karlsruhe Inst Technol, Light Technol Inst, Engesserstr 13, D-76131 Karlsruhe, Germany
关键词
Doping; Organic semiconductors; Thermoelectrics conductivity; Seebeck coefficient; DOUBLE PEROVSKITE; TRANSPORT-PROPERTIES; SOLAR-CELLS; LEAD; BR; CL;
D O I
10.1557/s43578-024-01321-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the rising popularity of organic thermoelectrics, the interest in doping strategies for organic semiconductors has increased strongly over the last decade. Here, we use aggregate data to discuss how far the approaches pursued till date have brought the community in terms of typical performance indicators for doped semiconductors in the context of thermoelectric applications. Surprisingly, despite the superlinear increase in the number of publications on the subject matter, the performance indicators show no clear upward trend in the same time range. In the second part, we discuss possible approaches to break this deadlock. A specifically promising approach, controlling the distribution of dopant atoms in the host material, is discussed in some quantitative detail by experiments and numerical simulations. We show that spontaneous modulation doping, that is, the spatial separation between static dopant ions and mobile charge carriers, leads to a dramatic conductivity increase at low dopant loading.
引用
收藏
页码:1197 / 1206
页数:10
相关论文
共 50 条
  • [1] Is the field of organic thermoelectrics stuck?
    Irene Brunetti
    Aditya Dash
    Dorothea Scheunemann
    Martijn Kemerink
    Journal of Materials Research, 2024, 39 : 1197 - 1206
  • [2] Organic and hybrid thermoelectrics
    Kemerink, Martijn
    Mueller, Christian
    Chabinyc, Michael L.
    Brinkmann, Martin
    APPLIED PHYSICS LETTERS, 2021, 119 (26)
  • [3] Organic and Hybrid Thermoelectrics
    Liang, Ziqi
    Chen, Lidong
    Bazan, Guillermo C.
    ADVANCED ELECTRONIC MATERIALS, 2019, 5 (11)
  • [4] Organic thermoelectrics for green energy
    Chong-an Di
    Wei Xu
    Daoben Zhu
    National Science Review, 2016, 3 (03) : 269 - 271
  • [5] Organic-based thermoelectrics
    Lindorf, M.
    Mazzio, K. A.
    Pflaum, J.
    Nielsch, K.
    Bruetting, W.
    Albrecht, M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 7495 - 7507
  • [6] Organic and Hybrid Thermoelectrics Preface
    Toshima, Naoki
    SYNTHETIC METALS, 2017, 225 : 1 - 2
  • [7] Organic thermoelectrics for green energy
    Di, Chong-an
    Xu, Wei
    Zhu, Daoben
    NATIONAL SCIENCE REVIEW, 2016, 3 (03) : 269 - 271
  • [8] Will organic thermoelectrics get hot?
    Campoy-Quiles, Mariano
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 377 (2152):
  • [9] Organic thermoelectrics: general discussion
    Aitchison, Catherine M.
    Awaga, Kunio
    Data, Przemyslaw
    Fujigaya, Tsuyohiko
    Fujino, Tomoko
    Fukazawa, Aiko
    Guo, Xugang
    Heeney, Martin
    Ie, Yutaka
    Nakagawa, Sakura
    Nakamura, Masakazu
    Nakatsuka, Nako
    Nishide, Hiroyuki
    Schroeder, Bob C.
    Skabara, Peter
    Singh, Manpreet
    Tani, Yosuke
    Tanaka, Yuya
    Tsuchiya, Youichi
    Uematsu, Taro
    Yakiyama, Yumi
    FARADAY DISCUSSIONS, 2024, 250 (00) : 400 - 416
  • [10] Recent Progress in Flexible Organic Thermoelectrics
    Culebras, Mario
    Choi, Kyungwho
    Cho, Chungyeon
    MICROMACHINES, 2018, 9 (12)