Bare-Bones Based Salp Swarm Algorithm for Text Document Clustering

被引:3
|
作者
Al-Betar, Mohammed Azmi [1 ,2 ,3 ]
Abasi, Ammar Kamal [4 ]
Al-Naymat, Ghazi [1 ,2 ]
Arshad, Kamran [1 ,2 ]
Makhadmeh, Sharif Naser [2 ,5 ]
机构
[1] Ajman Univ, Dept Informat Technol, Coll Engn & Informat Technol, Ajman, U Arab Emirates
[2] Ajman Univ, Artificial Intelligence Res Ctr AIRC, Ajman, U Arab Emirates
[3] Al Balqa Appl Univ, Al Huson Univ Coll, Dept Informat Technol, Irbid 19117, Jordan
[4] Mohamed Bin Zayed Univ Artificial Intelligence MBZ, Machine Learning Dept, Dept Informat Technol, Abu Dhabi, U Arab Emirates
[5] Univ Petra, Dept Data Sci & Artificial Intelligence, Amman 11196, Jordan
关键词
Global optimization; salp swarm algorithm; bare bones; greedy selection strategy; text document clustering; OPTIMIZATION ALGORITHM;
D O I
10.1109/ACCESS.2023.3314589
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Text Document Clustering (TDC) is a challenging optimization problem in unsupervised machine learning and text mining. The Salp Swarm Algorithm (SSA) has been found to be effective in solving complex optimization problems. However, the SSA's exploitation phase requires improvement to solve the TDC problem effectively. In this paper, we propose a new approach, known as the Bare-Bones Salp Swarm Algorithm (BBSSA), which leverages Gaussian search equations, inverse hyperbolic cosine control strategies, and greedy selection techniques to create new individuals and guide the population towards solving the TDC problem. We evaluated the performance of the BBSSA on six benchmark datasets from the text clustering domain and six scientific papers datasets extracted from the top eight UAE universities. The experimental results demonstrate that the BBSSA algorithm outperforms traditional SSA and nine other optimization algorithms. Furthermore, the BBSSA algorithm achieves better results than the five traditional clustering techniques.
引用
收藏
页码:100010 / 100028
页数:19
相关论文
共 50 条
  • [1] Design and analysis of text document clustering using salp swarm algorithm
    Ponnusamy, Muruganantham
    Bedi, Pradeep
    Suresh, Tamilarasi
    Alagarsamy, Aravindhan
    Manikandan, R.
    Yuvaraj, N.
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (14): : 16197 - 16213
  • [2] Design and analysis of text document clustering using salp swarm algorithm
    Muruganantham Ponnusamy
    Pradeep Bedi
    Tamilarasi Suresh
    Aravindhan Alagarsamy
    R. Manikandan
    N. Yuvaraj
    The Journal of Supercomputing, 2022, 78 : 16197 - 16213
  • [3] Radiation shielding optimization design research based on bare-bones particle swarm optimization algorithm
    Lei, Jichong
    Yang, Chao
    Zhang, Huajian
    Liu, Chengwei
    Yan, Dapeng
    Xiao, Guanfei
    He, Zhen
    Chen, Zhenping
    Yu, Tao
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2023, 55 (06) : 2215 - 2221
  • [4] Gaussian bare-bones firefly algorithm
    Peng H.
    Peng S.
    International Journal of Innovative Computing and Applications, 2019, 10 (01) : 35 - 42
  • [5] Bare-bones differential evolution algorithm based on trigonometry
    Peng, Hu
    Wu, Zhijian
    Zhou, Xinyu
    Deng, Changshou
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2015, 52 (12): : 2776 - 2788
  • [6] Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis
    Zhang, Yong
    Gong, Dun-wei
    Sun, Xiao-yan
    Geng, Na
    SOFT COMPUTING, 2014, 18 (07) : 1337 - 1352
  • [7] Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis
    Yong Zhang
    Dun-wei Gong
    Xiao-yan Sun
    Na Geng
    Soft Computing, 2014, 18 : 1337 - 1352
  • [8] A Novel Constrained Bare-bones Particle Swarm Optimization
    Shen, Yuanxia
    Chen, Jian
    Zeng, Chuanhua
    Ji, Bin
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2511 - 2517
  • [9] New Modified Bare-bones Particle Swarm Optimization
    Zhao, Xinchao
    Liu, Huiping
    Liu, Dongyue
    Ai, Wenbao
    Zuo, Xingquan
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 416 - 422
  • [10] Layer bare-bones particle swarm optimization algorithm with few control parameters
    Zhang, Fang-Fang
    Wang, Jian-Jun
    Zhang, Yong
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2015, 35 (12): : 3217 - 3224