Axially chiral thermally activated delayed fluorescence emitters enabled by molecular engineering towards high-performance circularly polarized OLEDs

被引:15
|
作者
Wan, Shi-Peng [1 ]
Zhao, Wen-Long [1 ,2 ]
Tan, Ke-Ke [1 ,2 ]
Lu, Hai-Yan [1 ]
Li, Meng [1 ,2 ]
Chen, Chuan-Feng [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, CAS Key Lab Mol Recognit & Funct, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Axially chiral biphenyl; Thermally activated delayed fluorescence; Circularly polarized luminescence; Organic light -emitting diodes; High external quantum efficiency; ELECTROLUMINESCENCE;
D O I
10.1016/j.cej.2023.143508
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Circularly polarized organic light-emitting diodes (CP-OLEDs), as an emerging display technology, can meet people's demand for higher quality of visual enjoyment. Wherein, circularly polarized thermally activated delayed fluorescence (CP-TADF) emitters has grown into a promising direction for developing efficient CP-OLEDs, however, how to synergistically advance the chirality and luminescence efficiency is still a tricky dilemma. Herein, a pair of axially chiral CP-TADF enantiomers (-)-(S)/(+)-(R)-ax-DMAC are ingeniously designed by molecular engineering to fine tune electronic and photophysical properties, achieving a major improvement in device performance while inheriting the robust chiroptical feature. Two enantiomers possess excellent TADF feature with a tiny ?E-ST of 0.03 eV and high photoluminescence quantum yields (PLQYs) of 90% in doped film, which, moreover, exhibit obvious circularly polarized luminescence (CPL) signals with luminescence dissymmetry factor (|glum|) of about 2.2 x 10(-3) in solution. Notably, highly efficient CP-OLEDs employing (-)-(S)/(+)-(R)-ax-DMAC as emitter radiate intense cyan CP light with the prominent maximum external quantum efficiency (EQE(max)) of 30.1% and |gEL| of 2.0 x 10(-3), which is the highest EQE reported among all CPTADF emitters with axially chiral emitting skeleton. Interestingly, a remarkably and rarely high luminance of nearly 50,000 cd/m(2) is reached though delicate device adjustment, and these findings indicates the collaboration of molecular engineering and sophisticated device design aid in fabricating advanced and efficient CP-OLEDs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Chiral thermally activated delayed fluorescence emitters for circularly polarized luminescence and efficient deep blue OLEDs
    Huang, Zhongyan
    Huang, Chih-Wei
    Tang, Yu-Kun
    Xiao, Zhengqi
    Li, Nengquan
    Hua, Tao
    Cao, Xiaosong
    Zhou, Changjiang
    Wu, Chung-Chih
    Yang, Chuluo
    DYES AND PIGMENTS, 2022, 197
  • [2] Blue Axially Chiral Biphenyl Based Thermally Activated Delayed Fluorescence Materials for Efficient Circularly Polarized OLEDs
    Tu, Zhen-Long
    Lu, Jun-Jian
    Luo, Xu-Feng
    Hu, Jia-Jun
    Li, Si
    Wang, Yi
    Zheng, You-Xuan
    Zuo, Jing-Lin
    Pan, Yi
    ADVANCED OPTICAL MATERIALS, 2021, 9 (20)
  • [3] Chiral Polyacetylene with Thermally Activated Delayed Fluorescence Feature for High-Performance Circularly Polarized Light Detection
    Zhang, Yuzhuo
    Chen, Mingli
    Li, Hong
    Hua, Lei
    Zhao, Zhennan
    Zhao, Haisong
    Kan, Lixuan
    Chu, Xiao
    Wang, Kai
    Yan, Shouke
    Ren, Zhongjie
    CHEMISTRY OF MATERIALS, 2024, 36 (07) : 3369 - 3380
  • [4] Two Different Chiral Groups Based Thermally Activated Delayed Fluorescence Materials for Circularly Polarized OLEDs
    Liang, Jia-Qi
    Hu, Jia-Jun
    Huo, Zhong-Zhong
    Yan, Zhi-Ping
    Yuan, Li
    Zhong, Xiao-Sheng
    Wei, Yi
    Song, Shi-Quan
    Liu, Qi-Ming
    Song, You
    Zheng, You-Xuan
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (22)
  • [5] Axially Chiral Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers for Efficient Circularly Polarized Electroluminescence
    Xing, Shuai
    Zhong, Xiao-Sheng
    Liao, Xiang-Ji
    Wang, Yu
    Yuan, Li
    Ni, Hua-Xiu
    Zheng, You-Xuan
    ADVANCED OPTICAL MATERIALS, 2024, 12 (22):
  • [6] Design and Synthesis of New Circularly Polarized Thermally Activated Delayed Fluorescence Emitters
    Feuillastre, Sophie
    Pauton, Mathilde
    Gao, Longhui
    Desmarchelier, Alaric
    Riives, Adrian J.
    Prim, Damien
    Tondelier, Denis
    Geffroy, Bernard
    Muller, Gilles
    Clavier, Gilles
    Pieters, Gregory
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (12) : 3990 - 3993
  • [7] Novel Strategy to Develop Exciplex Emitters for High-Performance OLEDs by Employing Thermally Activated Delayed Fluorescence Materials
    Liu, Wei
    Chen, Jia-Xiong
    Zheng, Cai-Jun
    Wang, Kai
    Chen, Dong-Yang
    Li, Fan
    Dong, Yu-Ping
    Lee, Chun-Sing
    Ou, Xue-Mei
    Zhang, Xiao-Hong
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (12) : 2002 - 2008
  • [8] Deep-Blue Narrowband Hetero[6]helicenes Showing Circularly Polarized Thermally Activated Delayed Fluorescence Toward High-Performance OLEDs
    Ye, Zeyuan
    Wu, Han
    Xu, Yulin
    Hua, Tao
    Chen, Guohao
    Chen, Zhanxiang
    Yin, Xiaojun
    Huang, Manli
    Xu, Ke
    Song, Xiufang
    Huang, Zhongyan
    Lv, Xialei
    Miao, Jingsheng
    Cao, Xiaosong
    Yang, Chuluo
    ADVANCED MATERIALS, 2024, 36 (01)
  • [9] Highly efficient ionic thermally activated delayed fluorescence emitters with short exciton lifetimes towards High-Performance Solution-Processed OLEDs
    Wang, Ya-Shu
    Lu, Xin
    Song, Jin-Hui
    Li, Xiao
    Tao, Xiao-Dong
    Meng, Lingyi
    Chen, Xu-Lin
    Lu, Can-Zhong
    CHEMICAL ENGINEERING JOURNAL, 2024, 482
  • [10] First N-Borylated Emitters Displaying Highly Efficient Thermally Activated Delayed Fluorescence and High-Performance OLEDs
    Lien, Yi-Jyun
    Lin, Tzu-Chieh
    Yang, Chun-Chieh
    Chiang, Yu-Cheng
    Chang, Chih-Hao
    Liu, Shih-Hung
    Chen, Yi-Ting
    Lee, Gene-Hsiang
    Chou, Pi-Tai
    Lu, Chin-Wei
    Chi, Yun
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (32) : 27090 - 27101