Privacy-preserving spam filtering using homomorphic and functional encryption

被引:2
|
作者
Nguyen, Tham [1 ]
Karunanayake, Naveen [1 ]
Wang, Sicong [1 ]
Seneviratne, Suranga [1 ]
Hu, Peizhao [2 ]
机构
[1] Univ Sydney, Sch Comp Sci, Sydney, Australia
[2] Rochester Inst Technol, Rochester, MN USA
关键词
Spam filtering; Deep neural networks; Functional encryption; Homomorphic encryption;
D O I
10.1016/j.comcom.2022.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Conventional spam classification requires the end-users to reveal the content of incoming emails to a classifier so that text analysis can be performed. On the other hand, new cryptographic primitives allow this classification task to be performed on encrypted emails without revealing the email contents, hence preserves user data privacy. In this paper, we construct a spam classification framework that enables the classification of encrypted emails. Our model is based on a neural network with a quadratic network component and a multi-layer perceptron network component. The quadratic network architecture is compatible with the operation of an existing quadratic functional encryption scheme. To protect email content privacy, we proposed two spam classification solutions based on homomorphic encryption (HE) and functional encryption (FE) that enables our classifiers to predict the label of encrypted emails. The evaluation results on real-world spam datasets indicate that our proposed spam classification solutions achieve accuracies over 95%. Our performance study and security analysis provide pros and cons of each proposed solution. For instance, the FE solution predicts a label of an encrypted email in less than 31 s whereas the HE solution takes up to 265 s to do so. Nonetheless, the HE solution is not prone to potential information leakage as the FE solution.
引用
收藏
页码:230 / 241
页数:12
相关论文
共 50 条
  • [1] Privacy Preserving Spam Email Filtering Based on Somewhat Homomorphic Using Functional Encryption
    Jaiswal, Sumit
    Patel, Subhash Chandra
    Singh, Ravi Shankar
    [J]. PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON FRONTIERS IN INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2015, 2016, 404 : 579 - 585
  • [2] BlindFilter: Privacy-Preserving Spam Email Detection Using Homomorphic Encryption
    Lee, Dongwon
    Ahn, Myeonghwan
    Kwak, Hyesun
    Hong, Jin B.
    Kim, Hyoungshick
    [J]. 2023 42ND INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS, SRDS 2023, 2023, : 35 - 45
  • [3] Privacy-Preserving Collaborative Filtering Using Fully Homomorphic Encryption
    Jumonji, Seiya
    Sakai, Kazuya
    Sun, Min-Te
    Ku, Wei-Shinn
    [J]. 2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1551 - 1552
  • [4] Privacy-Preserving Collaborative Filtering Using Fully Homomorphic Encryption
    Jumonji, Seiya
    Sakai, Kazuya
    Sun, Min-Te
    Ku, Wei-Shinn
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (03) : 2961 - 2974
  • [5] Privacy-Preserving Decentralized Optimization Using Homomorphic Encryption
    Huo, Xiang
    Liu, Mingxi
    [J]. IFAC PAPERSONLINE, 2020, 53 (05): : 630 - 633
  • [6] Privacy-Preserving Federated Learning Using Homomorphic Encryption
    Park, Jaehyoung
    Lim, Hyuk
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [7] Privacy-preserving Surveillance Methods using Homomorphic Encryption
    Bowditch, William
    Abramson, Will
    Buchanan, William J.
    Pitropakis, Nikolaos
    Hall, Adam J.
    [J]. ICISSP: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2020, : 240 - 248
  • [8] Privacy-Preserving Biometric Matching Using Homomorphic Encryption
    Pradel, Gaetan
    Mitchell, Chris
    [J]. 2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 494 - 505
  • [9] Privacy-Preserving Collective Learning With Homomorphic Encryption
    Paul, Jestine
    Annamalai, Meenatchi Sundaram Muthu Selva
    Ming, William
    Al Badawi, Ahmad
    Veeravalli, Bharadwaj
    Aung, Khin Mi Mi
    [J]. IEEE ACCESS, 2021, 9 : 132084 - 132096
  • [10] A privacy-preserving parallel and homomorphic encryption scheme
    Min, Zhaoe
    Yang, Geng
    Shi, Jingqi
    [J]. OPEN PHYSICS, 2017, 15 (01): : 135 - 142