Superwettable Electrolyte Engineering for Fast Charging Li-Ion Batteries

被引:9
|
作者
Li, Chao [1 ,2 ,3 ]
Liang, Zhenye [2 ]
Wang, Lina [4 ]
Cao, Daofan [3 ]
Yin, Yun-Chao [2 ]
Zuo, Daxian [2 ]
Chang, Jian [5 ]
Wang, Jun [5 ]
Liu, Ke [3 ,5 ]
Li, Xing [6 ]
Luo, Guangfu [4 ]
Deng, Yonghong [4 ,5 ]
Wan, Jiayu [2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Shanghai Jiao Tong Univ, Global Inst Future Technol, Future Battery Res Ctr, Shanghai, Peoples R China
[3] Southern Univ Sci & Technol, Coll Sci, Dept Chem, Shenzhen 518055, Peoples R China
[4] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Sch Innovat & Entrepreneurship, Shenzhen 518055, Peoples R China
[6] Contemporary Amperex Technol Ltd CATL, Ningde 352100, Peoples R China
基金
中国国家自然科学基金;
关键词
INORGANIC COMPONENTS; INTERPHASE; SEI; ADDITIVES; GRAPHITE; WETTABILITY; PERFORMANCE; GENERATION; CHALLENGES; ANODES;
D O I
10.1021/acsenergylett.3c02572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite ubiquitous application, lithium-ion batteries (LIBs) still face significant challenges in terms of fast charging over extended cycles. This is primarily due to the incomplete coverage and unsatisfactory performance of the solid electrolyte interphase (SEI) layer. However, conventional electrolyte engineering methods can be hindered by increased viscosity, low wettability, and high cost in growing an ideal SEI. Herein, we propose a general strategy that tackles this challenge using superwettable electrolytes with ultralow concentration, which enables uniform and complete coverage of the SEI on a graphite anode. Intriguingly, this electrolyte can cause high overpotentials during the low-current formation process, leading to an SEI layer rich in inorganic components. As a result, LIBs with superwettable electrolytes exhibit remarkable cycle stability and high-rate performance of 5 C at a capacity of 166 mAh g(-1), which is also verified in pouch cells. Our research introduces a simple and effective strategy to achieve an optimized SEI layer for LIBs, which can be readily extended to other battery systems.
引用
收藏
页码:1295 / 1304
页数:10
相关论文
共 50 条
  • [1] Electrolyte Design for Fast-Charging Li-Ion Batteries
    Logan, E. R.
    Dahn, J. R.
    TRENDS IN CHEMISTRY, 2020, 2 (04): : 354 - 366
  • [2] A superconcentrated ether electrolyte for fast-charging Li-ion batteries
    Yamada, Yuki
    Yaegashi, Makoto
    Abe, Takeshi
    Yamada, Atsuo
    CHEMICAL COMMUNICATIONS, 2013, 49 (95) : 11194 - 11196
  • [3] The Puzzles in Fast Charging of Li-Ion Batteries
    Sheng Shui Zhang
    Energy & Environmental Materials, 2022, 5 (04) : 1005 - 1007
  • [4] The Puzzles in Fast Charging of Li-Ion Batteries
    Sheng Shui Zhang
    Energy & Environmental Materials , 2022, (04) : 1005 - 1007
  • [5] The Puzzles in Fast Charging of Li-Ion Batteries
    Zhang, Sheng Shui
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (04) : 1005 - 1007
  • [6] Conformal Pressure and Fast-Charging Li-Ion Batteries
    Cao, Chuntian
    Steinrueck, Hans-Georg
    Paul, Partha P.
    Dunlop, Alison R.
    Trask, Stephen E.
    Jansen, Andrew N.
    Kasse, Robert M.
    Thampy, Vivek
    Yusuf, Maha
    Weker, Johanna Nelson
    Shyam, Badri
    Subbaraman, Ram
    Davis, Kelly
    Johnston, Christina M.
    Takacs, Christopher J.
    Toney, Michael F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (04)
  • [7] Effect of thermal environments on fast charging Li-ion batteries
    Liu, Teng
    Ge, Shanhai
    Yang, Xiao-Guang
    Wang, Chao-Yang
    JOURNAL OF POWER SOURCES, 2021, 511
  • [8] Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries
    Lei, Sheng
    Zeng, Ziqi
    Liu, Mengchuang
    Zhang, Han
    Cheng, Shijie
    Xie, Jia
    NANO ENERGY, 2022, 98
  • [9] Engineering the separators for high electrolyte uptakes in Li-ion batteries
    Likitaporn, Chutiwat
    Prathumrat, Peerawat
    Senthilkumar, Nangan
    Tanalue, Nattapon
    Wongsalam, Tawan
    Okhawilai, Manunya
    Journal of Energy Storage, 2024, 101
  • [10] Enhanced Electrolyte Transport and Kinetics Mitigate Graphite Exfoliation and Li Plating in Fast-Charging Li-Ion Batteries
    Gao, Hongpeng
    Yan, Qizhang
    Holoubek, John
    Yin, Yijie
    Bao, Wurigumula
    Liu, Haodong
    Baskin, Artem
    Li, Mingqian
    Cai, Guorui
    Li, Weikang
    Tran, Duc
    Liu, Ping
    Luo, Jian
    Meng, Ying Shirley
    Chen, Zheng
    ADVANCED ENERGY MATERIALS, 2023, 13 (05)