Machine learning-assisted search for novel coagulants: When machine learning can be efficient even if data availability is low

被引:0
|
作者
Rovenchak, Andrij [1 ,2 ]
Druchok, Maksym [1 ,3 ,4 ]
机构
[1] SoftServe Inc, Lvov, Ukraine
[2] Ivan Franko Natl Univ Lviv, Prof Ivan Vakarchuk Dept Theoret Phys, Lvov, Ukraine
[3] Inst Condensed Matter Phys, Lvov, Ukraine
[4] Inst Condensed Matter Phys, 1 Svientsitskii St, UA-79011 Lvov, Ukraine
关键词
anticoagulants; coagulants; machine learning; molecular design; PROTEIN-C; VARIATIONAL AUTOENCODER; BINDING AFFINITIES; LIGAND; PREDICTION; DISCOVERY; DESIGN; SMILES;
D O I
10.1002/jcc.27292
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Design of new drugs is a challenging process: a candidate molecule should satisfy multiple conditions to act properly and make the least side-effect-perfect candidates selectively attach to and influence only targets, leaving off-targets intact. The amount of experimental data about various properties of molecules constantly grows, promoting data-driven approaches. However, the applicability of typical predictive machine learning techniques can be substantially limited by a lack of experimental data about a particular target. For example, there are many known Thrombin inhibitors (acting as anticoagulants), but a very limited number of known Protein C inhibitors (coagulants). In this study, we present our approach to suggest new inhibitor candidates by building an effective representation of chemical space. For this aim, we developed a deep learning model-autoencoder, trained on a large set of molecules in the SMILES format to map the chemical space. Further, we applied different sampling strategies to generate novel coagulant candidates. Symmetrically, we tested our approach on anticoagulant candidates, where we were able to predict their inhibition towards Thrombin. We also compare our approach with MegaMolBART-another deep learning generative model, but exploiting similar principles of navigation in a chemical space. This study employs machine learning to generate new drugs, emphasizing cases with low data availability. Focusing on coagulants, underrepresented in databases, our approach generates molecular encodings based on the assumption that similar structures share properties. Strategies tested on anticoagulants are applied to discover novel coagulant candidates, navigating the encoding space. image
引用
收藏
页码:937 / 952
页数:16
相关论文
共 50 条
  • [1] Novel Cocrystals of Vonoprazan: Machine Learning-Assisted Discovery
    Lee, Min-Jeong
    Kim, Ji-Yoon
    Kim, Paul
    Lee, In-Seo
    Mswahili, Medard E.
    Jeong, Young-Seob
    Choi, Guang J.
    [J]. PHARMACEUTICS, 2022, 14 (02)
  • [2] Machine learning-assisted chemical design of highly efficient deicers
    Ito, Kai
    Fukatsu, Arisa
    Okada, Kenji
    Takahashi, Masahide
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Machine learning-assisted enzyme engineering
    Siedhoff, Niklas E.
    Schwaneberg, Ulrich
    Davari, Mehdi D.
    [J]. ENZYME ENGINEERING AND EVOLUTION: GENERAL METHODS, 2020, 643 : 281 - 315
  • [4] Machine Learning-Assisted Performance Testing
    Moghadam, Mahshid Helali
    [J]. ESEC/FSE'2019: PROCEEDINGS OF THE 2019 27TH ACM JOINT MEETING ON EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, 2019, : 1187 - 1189
  • [5] Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol
    Chen, Yuxiang
    Liu, Chuanlei
    Gong, Zijun
    Zhao, Qiyue
    Guo, Guanchu
    Jiang, Hao
    Sun, Hui
    Shen, Benxian
    [J]. Huagong Xuebao/CIESC Journal, 2024, 75 (03): : 914 - 923
  • [6] Towards a Machine Learning-Assisted Kernel with LAKE
    Fingler, Henrique
    Tarte, Isha
    Yu, Hangchen
    Szekely, Ariel
    Hu, Bodun
    Akella, Aditya
    Rossbach, Christopher J.
    [J]. PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, VOL 2, ASPLOS 2023, 2023, : 846 - 861
  • [7] Machine Learning-Assisted Segmentation of Pancreas MRI
    Tirado-Velez, Pedro L.
    Kang, Sanghoon
    Ju, Huiwen
    Campbell-Thompson, Martha
    Kim, Sarah
    Lamb, Damon
    [J]. DIABETES, 2024, 73
  • [8] Machine Learning-Assisted Analysis of Electrochemical Biosensors
    Deshpande, Shreyas
    Datar, Rishikesh
    Pramanick, Bidhan
    Bacher, Gautam
    [J]. IEEE SENSORS LETTERS, 2023, 7 (09)
  • [9] Machine learning-assisted colloidal synthesis: A review
    Gulevich, D. G.
    Nabiev, I. R.
    Samokhvalov, P. S.
    [J]. MATERIALS TODAY CHEMISTRY, 2024, 35
  • [10] Machine learning-assisted crystal engineering of a zeolite
    Xinyu Li
    He Han
    Nikolaos Evangelou
    Noah J. Wichrowski
    Peng Lu
    Wenqian Xu
    Son-Jong Hwang
    Wenyang Zhao
    Chunshan Song
    Xinwen Guo
    Aditya Bhan
    Ioannis G. Kevrekidis
    Michael Tsapatsis
    [J]. Nature Communications, 14