R2-trans: Fine-grained visual categorization with redundancy reduction

被引:2
|
作者
Ye, Shuo [1 ]
Yu, Shujian [2 ,3 ]
Wang, Yu [1 ]
You, Xinge [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
[2] Vrije Univ Amsterdam, Dept Comp Sci, Amsterdam, Netherlands
[3] UiT Arctic Univ Norway, Machine Learning Grp, Tromso, Norway
关键词
Fine-grained visual categorization; Batch -based dynamic mask; Information bottleneck; NETWORK;
D O I
10.1016/j.imavis.2024.104923
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fine-grained visual categorization (FGVC) aims to discriminate similar subcategories, whose main challenge is the large intraclass diversities and subtle inter-class differences. Existing FGVC methods usually select discriminant regions found by a trained model, which is prone to neglect other potential discriminant information. On the other hand, the massive interactions between the sequence of image patches in ViT make the resulting class token contain lots of redundant information, which may also impact FGVC performance. In this paper, we present a novel approach for FGVC, which can simultaneously make use of partial yet sufficient discriminative information in environmental cues and also compress the redundant information in class-token with respect to the target. Specifically, our model calculates the ratio of high-weight regions in a batch, adaptively adjusts the masking threshold, and achieves moderate extraction of background information in the input space. Moreover, we also use the Information Bottleneck (IB) approach to guide our network to learn a minimum sufficient representations in the feature space. Experimental results on three widely-used benchmark datasets verify that our approach can achieve better performance than other state-of-the-art approaches and baseline models. The code of our model is available at: https://github.com/SYe-hub/R-2-Trans.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Fine-Grained Video Categorization with Redundancy Reduction Attention
    Zhu, Chen
    Tan, Xiao
    Zhou, Feng
    Liu, Xiao
    Yue, Kaiyu
    Ding, Errui
    Ma, Yi
    [J]. COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 : 139 - 155
  • [2] Feathers Dataset for Fine-Grained Visual Categorization
    Belko, Alina
    Dobratulin, Konstantin
    Kuznetsov, Andrey
    [J]. THIRTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2020), 2021, 11605
  • [3] Fine-grained Visual Categorization with 2D-Warping
    Hanselmann, Harald
    Ney, Hermann
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 608 - 613
  • [4] Coarse-to-Fine Description for Fine-Grained Visual Categorization
    Yao, Hantao
    Zhang, Shiliang
    Zhang, Yongdong
    Li, Jintao
    Tian, Qi
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (10) : 4858 - 4872
  • [5] FINE-GRAINED VISUAL CATEGORIZATION WITH FINE-TUNED SEGMENTATION
    Li, Lingyun
    Guo, Yanqing
    Xie, Lingxi
    Kong, Xiangwei
    Tian, Qi
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2025 - 2029
  • [6] SIM-Trans: Structure Information Modeling Transformer for Fine-grained Visual Categorization
    Sun, Hongbo
    He, Xiangteng
    Peng, Yuxin
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 5853 - 5861
  • [7] Alignment Enhancement Network for Fine-grained Visual Categorization
    Hu, Yutao
    Liu, Xuhui
    Zhang, Baochang
    Han, Jungong
    Cao, Xianbin
    [J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (01)
  • [8] Squeezed Bilinear Pooling for Fine-Grained Visual Categorization
    Liao, Qiyu
    Wang, Dadong
    Holewa, Hamish
    Xu, Min
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 728 - 732
  • [9] Adaptive Triplet Model for Fine-Grained Visual Categorization
    Liang, Jingyun
    Guo, Jinlin
    Guo, Yanming
    Lao, Songyang
    [J]. IEEE ACCESS, 2018, 6 : 76776 - 76786
  • [10] Discriminative Suprasphere Embedding for Fine-Grained Visual Categorization
    Ye, Shuo
    Peng, Qinmu
    Sun, Wenju
    Xu, Jiamiao
    Wang, Yu
    You, Xinge
    Cheung, Yiu-Ming
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5092 - 5102