Deep Reinforcement Learning-Based Task Offloading for Vehicular Edge Computing With Flexible RSU-RSU Cooperation

被引:8
|
作者
Fan, Wenhao [1 ,2 ]
Zhang, Yaoyin [3 ,4 ]
Zhou, Guangtao [5 ]
Liu, Yuan'an [3 ,4 ]
机构
[1] Beijing Univ Posts & Telecommun BUPT, Sch Elect Engn, Beijing Key Lab Work Safety Intelligent Monitoring, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun BUPT, Natl Engn Res Ctr Disaster Backup & Recovery, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun BUPT, Sch Elect Engn, Beijing 100876, Peoples R China
[4] Beijing Univ Posts & Telecommun BUPT, Beijing Key Lab Work Safety Intelligent Monitoring, Beijing 100876, Peoples R China
[5] China Unicom Smart Connect Technol Co Ltd, Beijing 100033, Peoples R China
基金
中国国家自然科学基金;
关键词
Edge computing; internet of vehicles; vehicle mobility; resource management; task offloading; MOBILITY;
D O I
10.1109/TITS.2024.3349546
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vehicle edge computing (VEC) acts as an enhancement to provide low latency and low energy consumption for internet of vehicles (IoV) applications. Mobility of vehicles and load difference of roadside units (RSUs) are two important issues in VEC. The former results in task result reception failures owing to vehicles moving out of the coverage of their current RSUs; the latter leads to system performance degradation owing to load imbalance among the RSUs. They can be well solved by exploiting flexible RSU-RSU cooperation, which has not been fully studied by existing works. In this paper, we propose a novel resource management scheme for joint task offloading, computing resource allocation for vehicles and RSUs, vehicle-to-RSU transmit power allocation, and RSU-to-RSU transmission rate allocation. In our scheme, a task result can be transferred to the RSU where the vehicle is currently located, and a task can be further offloaded from a high-load RSU to a low-load RSU. To minimize the total task processing delay and energy consumption of all the vehicles, we design a twin delayed deep deterministic policy gradient (TD3)-based deep reinforcement learning (DRL) algorithm, where we embed an optimization subroutine to solve 2 sub-problems via numerical methods, thus reducing the training complexity of the algorithm. Extensive simulations are conducted in 6 different scenarios. Compared with 4 reference schemes, our scheme can reduce the total task processing cost by 17.3%-28.4%.
引用
收藏
页码:7712 / 7725
页数:14
相关论文
共 50 条
  • [1] An RSU-crossed dependent task offloading scheme for vehicular edge computing based on deep reinforcement learning
    Bi, Xiang
    Shi, Jianing
    Zhang, Benhong
    Lyu, Zengwei
    Huang, Lingjie
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2023, 41 (04) : 244 - 256
  • [2] Deep Learning-Based Task Offloading for Vehicular Edge Computing
    Zeng, Feng
    Liu, Chengsheng
    Tangjiang, Junzhe
    Li, Wenjia
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT III, 2021, 12939 : 291 - 298
  • [3] Deep Reinforcement Learning-Based Task Offloading and Load Balancing for Vehicular Edge Computing
    Wu, Zhoupeng
    Jia, Zongpu
    Pang, Xiaoyan
    Zhao, Shan
    ELECTRONICS, 2024, 13 (08)
  • [4] Deep Reinforcement Learning-Based Computation Offloading in Vehicular Edge Computing
    Zhan, Wenhan
    Luo, Chunbo
    Wang, Jin
    Min, Geyong
    Duan, Hancong
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [5] Deep Learning-Based Task Discrimination Offloading in Vehicular Edge Computing
    Zhang J.
    Qi K.
    Zhang Q.
    Sun L.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (01): : 29 - 39
  • [6] Deep reinforcement learning-based dynamical task offloading for mobile edge computing
    Xie, Bo
    Cui, Haixia
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [7] Task offloading in vehicular edge computing networks via deep reinforcement learning
    Karimi, Elham
    Chen, Yuanzhu
    Akbari, Behzad
    COMPUTER COMMUNICATIONS, 2022, 189 : 193 - 204
  • [8] Prioritized Task Offloading in Vehicular Edge Computing Using Deep Reinforcement Learning
    Uddin, Ashab
    Sakr, Ahmed Hamdi
    Zhang, Ning
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [9] Federated Deep Reinforcement Learning Based Task Offloading with Power Control in Vehicular Edge Computing
    Moon, Sungwon
    Lim, Yujin
    SENSORS, 2022, 22 (24)
  • [10] Deep reinforcement learning-based online task offloading in mobile edge computing networks
    Wu, Haixing
    Geng, Jingwei
    Bai, Xiaojun
    Jin, Shunfu
    INFORMATION SCIENCES, 2024, 654