Deep learning and single-cell phenotyping for rapid antimicrobial susceptibility detection in Escherichia coli

被引:8
|
作者
Zagajewski, Alexander [1 ,2 ]
Turner, Piers [1 ,2 ]
Feehily, Conor [3 ]
El Sayyed, Hafez [1 ,2 ]
Andersson, Monique [3 ,4 ]
Barrett, Lucinda [4 ]
Oakley, Sarah [4 ]
Stracy, Mathew [5 ]
Crook, Derrick [3 ,4 ]
Nellaker, Christoffer [6 ]
Stoesser, Nicole [3 ,4 ]
Kapanidis, Achillefs N. [1 ,2 ]
机构
[1] Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PJ, England
[2] Univ Oxford, Kavli Inst Nanosci Discovery, South Parks Rd, Oxford OX1 3QU, England
[3] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Med, Oxford OX3 9DU, England
[4] Oxford Univ Hosp NHS Fdn Trust, Dept Microbiol & Infect Dis, Oxford OX3 9DU, England
[5] Univ Oxford, Sir William Dunn Sch Pathol, South Parks Rd, Oxford OX1 3RE, England
[6] Univ Oxford, Big Data Inst, Nuffield Dept Womens & Reprod Hlth, Oxford OX3 7LF, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 英国工程与自然科学研究理事会;
关键词
BACTERIAL; IDENTIFICATION;
D O I
10.1038/s42003-023-05524-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rise of antimicrobial resistance (AMR) is one of the greatest public health challenges, already causing up to 1.2 million deaths annually and rising. Current culture-based turnaround times for bacterial identification in clinical samples and antimicrobial susceptibility testing (AST) are typically 18-24 h. We present a novel proof-of-concept methodological advance in susceptibility testing based on the deep-learning of single-cell specific morphological phenotypes directly associated with antimicrobial susceptibility in Escherichia coli. Our models can reliably (80% single-cell accuracy) classify untreated and treated susceptible cells for a lab-reference fully susceptible E. coli strain, across four antibiotics (ciprofloxacin, gentamicin, rifampicin and co-amoxiclav). For ciprofloxacin, we demonstrate our models reveal significant (p < 0.001) differences between bacterial cell populations affected and unaffected by antibiotic treatment, and show that given treatment with a fixed concentration of 10 mg/L over 30 min these phenotypic effects correlate with clinical susceptibility defined by established clinical breakpoints. Deploying our approach on cell populations from six E. coli strains obtained from human bloodstream infections with varying degrees of ciprofloxacin resistance and treated with a range of ciprofloxacin concentrations, we show single-cell phenotyping has the potential to provide equivalent information to growth-based AST assays, but in as little as 30 min.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deep learning and single-cell phenotyping for rapid antimicrobial susceptibility detection in Escherichia coli
    Alexander Zagajewski
    Piers Turner
    Conor Feehily
    Hafez El Sayyed
    Monique Andersson
    Lucinda Barrett
    Sarah Oakley
    Mathew Stracy
    Derrick Crook
    Christoffer Nellåker
    Nicole Stoesser
    Achillefs N. Kapanidis
    Communications Biology, 6
  • [2] SINGLE-CELL MORPHOLOGICAL ANALYSIS FOR RAPID ANTIMICROBIAL SUSCEPTIBILITY TEST
    Choi, J.
    Yoo, J.
    Lee, M.
    Kim, E. -G.
    Lee, J. S.
    Lee, S.
    Joo, S.
    Song, S. H.
    Kim, E. -C.
    Lee, J. C.
    Kim, H. C.
    Jung, Y. -G.
    Kwon, S.
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 730 - 734
  • [3] A rapid antimicrobial susceptibility test based on single-cell morphological analysis
    Choi, Jungil
    Yoo, Jungheon
    Lee, Mincheol
    Kim, Eun-Geun
    Lee, Ji Soo
    Lee, Seungok
    Joo, Seik
    Song, Sang Hoon
    Kim, Eui-Chong
    Lee, Jung Chan
    Kim, Hee Chan
    Jung, Yong-Gyun
    Kwon, Sunghoon
    SCIENCE TRANSLATIONAL MEDICINE, 2014, 6 (267)
  • [4] A Rapid Single-Cell Antimicrobial Susceptibility Testing Workflow for Bloodstream Infections
    Forsyth, Britney
    Torab, Peter
    Lee, Jyong-Huei
    Malcom, Tyler
    Wang, Tza-Huei
    Liao, Joseph C.
    Yang, Samuel
    Kvam, Erik
    Puleo, Chris
    Wong, Pak Kin
    BIOSENSORS-BASEL, 2021, 11 (08):
  • [5] Rapid Assessment of Susceptibility of Bacteria and Erythrocytes to Antimicrobial Peptides by Single-Cell Impedance Cytometry
    Troiano, Cassandra
    De Ninno, Adele
    Casciaro, Bruno
    Riccitelli, Francesco
    Park, Yoonkyung
    Businaro, Luca
    Massoud, Renato
    Mangoni, Maria Luisa
    Bisegna, Paolo
    Stella, Lorenzo
    Caselli, Federica
    ACS SENSORS, 2023, 8 (07): : 2572 - 2582
  • [6] Acoustofluidic interferometric device for rapid single-cell physical phenotyping
    J. Mejía Morales
    P. Glynne-Jones
    M. Vassalli
    G. L. Lippi
    European Biophysics Journal, 2022, 51 : 185 - 191
  • [7] Acoustofluidic interferometric device for rapid single-cell physical phenotyping
    Morales, J. Mejia
    Glynne-Jones, P.
    Vassalli, M.
    Lippi, G. L.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2022, 51 (02): : 185 - 191
  • [8] Deep Learning in Single-cell Analysis
    Molho, Dylan
    Ding, Jiayuan
    Tang, Wenzhuo
    Li, Zhaoheng
    Wen, Hongzhi
    Wang, Yixin
    Venegas, Julian
    Jin, Wei
    Liu, Renming
    Su, Runze
    Danaher, Patrick
    Yang, Robert
    Lei, Yu Leo
    Xie, Yuying
    Tang, Jiliang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)
  • [9] Single-cell, real-time detection of oxidative stress induced in Escherichia coli by the antimicrobial peptide CM15
    Choi, Heejun
    Yang, Zhilin
    Weisshaar, James C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (03) : E303 - E310
  • [10] Rapid Antimicrobial Susceptibility Test of Helicobacter pylori to Metronidazole via Single-Cell Raman Spectrometry
    Sun, Lu
    Liu, Min
    Gong, Yanan
    Zhai, Kangle
    Lv, FengYun
    He, Lihua
    Xue, Xinguang
    Liu, Xiaolu
    Wang, Hairui
    Fan, Dongjie
    You, Yuanhai
    Fang, Mengyang
    Sun, Luyang
    Xu, Jian
    Zhang, Jianzhong
    HELICOBACTER, 2024, 29 (05)