Covalent organic framework films grown on spongy g-C3N4 for efficient photocatalytic hydrogen production

被引:10
|
作者
Ding, Jingya [3 ]
Lou, Yaqin [1 ,2 ]
Dong, Guomeng [1 ,2 ]
Zhang, Yiwei [1 ,2 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Peoples R China
[2] Southeast Univ, Jiangsu Optoelect Funct Mat & Engn Lab, Nanjing 224051, Peoples R China
[3] Yancheng Inst Technol, Sch Chem & Chem Engn, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
g-C3N4; Covalent organic frameworks; S-scheme heterojunction; Photocatalytic hydrogen production; DFT; S-SCHEME HETEROJUNCTION; CARBON NITRIDE; ENERGY; WATER; CRYSTALLINE; DIOXIDE;
D O I
10.1016/j.jphotochem.2023.114590
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic hydrogen production promisingly mitigates and ameliorates the status quo of energy shortage and decarbonization of the energy supply. Given this, a photocatalyst was prepared by modifying spongy g-C3N4 with covalent organic frameworks (COFs). As an electron acceptor with a large specific surface, COFs can trap more transition electrons, leading to an increase in the photogenerated carriers involved in the surface reaction and increasing the active sites of the photocatalyst. The S-scheme heterojunction structure formed in g-C3N4/COFs composite catalyst triggers a decrease in the recombination rate of photogenerated electron-hole pairs as well as an increase in photogenerated electrons. The photocatalytic hydrogen production rate reached the maximum value of 7788.10 mu mol center dot h(-1)center dot g(-1), almost 7 times that of g-C3N4. The AQE of the catalyst reached 29.6 %. The electron transfer path from g-C3N4 to COFs was verified by density functional theory (DFT) calculation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Construction of covalent organic framework and g-C3N4 heterojunction for photocatalytic degradation of tetracycline and photocatalytic production of hydrogen peroxide
    Zhou, Chongsheng
    Tao, Le
    Gao, Jia
    Dong, Jingcun
    Zhu, Qingqing
    Liao, Chunyang
    Jiang, Guibin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (05):
  • [2] Designing of covalent organic framework/2D g-C3N4 heterostructure using a simple method for enhanced photocatalytic hydrogen production
    Hassan, Ahmed E.
    Elewa, Ahmed M.
    Hussien, Mai S. A.
    EL-Mahdy, Ahmed F. M.
    Mekhemer, Islam M. A.
    Yahia, Ibrahim S.
    Mohamed, Tarek A.
    Chou, Ho-Hsiu
    Wen, Zhenhai
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 653 : 1650 - 1661
  • [3] Donor-acceptor covalent organic framework/g-C3N4 hybrids for efficient visible light photocatalytic H2 production
    Lin, Chenxiang
    Han, Chaozheng
    Gong, Lei
    Chen, Xin
    Deng, Jinxia
    Qi, Dongdong
    Bian, Yongzhong
    Wang, Kang
    Jiang, Jianzhuang
    CATALYSIS SCIENCE & TECHNOLOGY, 2021, 11 (07) : 2616 - 2621
  • [4] Engineering of g-C3N4 for Photocatalytic Hydrogen Production: A Review
    Yan, Yachao
    Meng, Qing
    Tian, Long
    Cai, Yulong
    Zhang, Yujuan
    Chen, Yingzhi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (16)
  • [5] Construction and performance of a simple and efficient g-C3N4 photocatalytic hydrogen production system
    Xu, Yun
    Wang, Xuewei
    Zhu, Lingfeng
    An, Ran
    Qi, Zhulin
    Wu, Haisu
    Miao, Tifang
    Li, Longfeng
    Fu, Xianliang
    RSC ADVANCES, 2021, 11 (57) : 36034 - 36041
  • [6] Defect Engineered g-C3N4 for Efficient Visible Light Photocatalytic Hydrogen Production
    Tay, Qiuling
    Kanhere, Pushkar
    Ng, Chin Fan
    Chen, Shi
    Chakraborty, Sudip
    Huan, Alfred Cheng Hon
    Sum, Tze Chien
    Ahuja, Rajeev
    Chen, Zhong
    CHEMISTRY OF MATERIALS, 2015, 27 (14) : 4930 - 4933
  • [7] Exfoliated and plicated g-C3N4 nanosheets for efficient photocatalytic organic degradation and hydrogen evolution
    Beyhaqi, Ahmad
    Azimi, Seyed Mohammad Taghi
    Chen, Zhihong
    Hu, Chun
    Zeng, Qingyi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (39) : 20547 - 20559
  • [8] Controlled preparation of P-doped g-C3N4 nanosheets for efficient photocatalytic hydrogen production
    Qiachun Lin
    Zesheng Li
    Tingjian Lin
    Bolin Li
    Xichun Liao
    Huiqing Yu
    Changlin Yu
    Chinese Journal of Chemical Engineering, 2020, 28 (10) : 2677 - 2688
  • [9] Scalable fabrication of high surface area g-C3N4 nanotubes for efficient photocatalytic hydrogen production
    Arkhurst, Barton
    Guo, Ruiran
    Gunawan, Denny
    Oppong-Antwi, Louis
    Ashong, Andrews Nsiah
    Fan, Xinyue
    Rokh, Ghazaleh Bahman
    Chan, Sammy Lap Ip
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 87 : 321 - 331
  • [10] g-C3N4/ZnCdS heterojunction for efficient visible light-driven photocatalytic hydrogen production
    Bai, Tianyu
    Shi, Xiaofan
    Liu, Ming
    Huang, Hui
    Zhang, Jijie
    Bu, Xian-He
    RSC ADVANCES, 2021, 11 (60) : 38120 - 38125