Non-Gaussian Reconciliation for Continuous-Variable Quantum Key Distribution

被引:7
|
作者
Wang, Xiangyu [1 ]
Xu, Menghao [1 ]
Zhao, Yin [1 ]
Chen, Ziyang [2 ]
Yu, Song [1 ]
Guo, Hong [2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Peking Univ, Ctr Quantum Informat Technol, Sch Elect, State Key Lab Adv Opt Commun Syst, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
This work is supported by National Natural Science Foundation of China under Grants No. 62001041; No; 62201012; the Fundamental Research Funds of BUPT under Grant No. 2022RC08; and the Fund of State Key Laboratory of Information Photonics and Optical Communications under Grant No. IPOC2022ZT09;
D O I
10.1103/PhysRevApplied.19.054084
中图分类号
O59 [应用物理学];
学科分类号
摘要
Non-Gaussian modulation can improve the performance of continuous-variable quantum key distri-bution (CV QKD). For Gaussian-modulated coherent-state CV QKD, photon subtraction can realize non-Gaussian modulation, which can be equivalently implemented by non-Gaussian postselection. How-ever, non-Gaussian reconciliation has not been deeply researched, which is one of the key technologies in CV QKD. In this paper, we propose a non-Gaussian reconciliation method to obtain identical keys from non-Gaussian data. Multidimensional reconciliation and multiedge-type low-density parity-check codes (MET LDPC) are used in a non-Gaussian reconciliation scheme, where the layered belief propagation decoding algorithm of MET LDPC codes is used to reduce the decoding complexity. Furthermore, we compare the error-correction performance of Gaussian data and non-Gaussian data. The results show that the error-correction performance of non-Gaussian data is better than Gaussian data, where the frame error rate can be reduced by 50 % for code rate 0.1 at SNR of 0.1554 and the average iteration number can be reduced by 25 %.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Continuous-variable quantum key distribution with non-Gaussian operations
    Hu, Liyun
    Al-amri, M.
    Liao, Zeyang
    Zubairy, M. S.
    [J]. PHYSICAL REVIEW A, 2020, 102 (01)
  • [2] Continuous-variable quantum key distribution with non-Gaussian quantum catalysis
    Guo, Ying
    Ye, Wei
    Zhong, Hai
    Liao, Qin
    [J]. PHYSICAL REVIEW A, 2019, 99 (03)
  • [3] Quantum key distribution using continuous-variable non-Gaussian states
    Borelli, L. F. M.
    Aguiar, L. S.
    Roversi, J. A.
    Vidiella-Barranco, A.
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (02) : 893 - 904
  • [4] Quantum key distribution using continuous-variable non-Gaussian states
    L. F. M. Borelli
    L. S. Aguiar
    J. A. Roversi
    A. Vidiella-Barranco
    [J]. Quantum Information Processing, 2016, 15 : 893 - 904
  • [5] Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation
    Leverrier, Anthony
    Grangier, Philippe
    [J]. PHYSICAL REVIEW A, 2011, 83 (04):
  • [6] Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution
    Li, Zhengyu
    Zhang, Yichen
    Wang, Xiangyu
    Xu, Bingjie
    Peng, Xiang
    Guo, Hong
    [J]. PHYSICAL REVIEW A, 2016, 93 (01)
  • [7] Performance analysis of continuous-variable quantum key distribution using non-Gaussian states
    L. S. Aguiar
    L. F. M. Borelli
    J. A. Roversi
    A. Vidiella-Barranco
    [J]. Quantum Information Processing, 21
  • [8] Performance analysis of continuous-variable quantum key distribution using non-Gaussian states
    Aguiar, L. S.
    Borelli, L. F. M.
    Roversi, J. A.
    Vidiella-Barranco, A.
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 21 (08)
  • [9] Improved reconciliation for continuous-variable quantum key distribution
    Gyongyosi, L.
    Imre, S.
    [J]. ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION XII, 2019, 10933
  • [10] Multidimensional reconciliation for a continuous-variable quantum key distribution
    Leverrier, Anthony
    Alleaume, Romain
    Boutros, Joseph
    Zemor, Gilles
    Grangier, Philippe
    [J]. PHYSICAL REVIEW A, 2008, 77 (04)