Diffusion Models for Counterfactual Explanations

被引:0
|
作者
Jeanneret, Guillaume [1 ]
Simon, Loic [1 ]
Jurie, Fredric [1 ]
机构
[1] Normandy Univ, ENSICAEN, CNRS, UNICAEN,GREYC, Caen, France
来源
关键词
D O I
10.1007/978-3-031-26293-7_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Counterfactual explanations have shown promising results as a post-hoc framework to make image classifiers more explainable. In this paper, we propose DiME, a method allowing the generation of counterfactual images using the recent diffusion models. By leveraging the guided generative diffusion process, our proposed methodology shows how to use the gradients of the target classifier to generate counterfactual explanations of input instances. Further, we analyze current approaches to evaluate spurious correlations and extend the evaluation measurements by proposing a new metric: Correlation Difference. Our experimental validations show that the proposed algorithm surpasses previous state-of-the-art results on 5 out of 6 metrics on CelebA.
引用
收藏
页码:219 / 237
页数:19
相关论文
共 50 条
  • [1] Counterfactual Explanations for Models of Code
    Cito, Juergen
    Dillig, Isil
    Murali, Vijayaraghavan
    Chandra, Satish
    [J]. 2022 ACM/IEEE 44TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: SOFTWARE ENGINEERING IN PRACTICE (ICSE-SEIP 2022), 2022, : 125 - 134
  • [2] Counterfactual Models for Fair and Adequate Explanations
    Asher, Nicholas
    De Lara, Lucas
    Paul, Soumya
    Russell, Chris
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2022, 4 (02): : 371 - 396
  • [3] Understanding Survival Models Through Counterfactual Explanations
    Alabdallah, Abdallah
    Jakubowski, Jakub
    Pashami, Sepideh
    Bobek, Szymon
    Ohlsson, Mattias
    Rognvaldsson, Thorsteinn
    Nalepa, Grzegorz J.
    [J]. COMPUTATIONAL SCIENCE, ICCS 2024, PT IV, 2024, 14835 : 310 - 324
  • [4] The Skyline of Counterfactual Explanations for Machine Learning Decision Models
    Wang, Yongjie
    Ding, Qinxu
    Wang, Ke
    Liu, Yue
    Wu, Xingyu
    Wang, Jinglong
    Liu, Yong
    Miao, Chunyan
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2030 - 2039
  • [5] ViCE: Visual Counterfactual Explanations for Machine Learning Models
    Gomez, Oscar
    Holter, Steffen
    Yuan, Jun
    Bertini, Enrico
    [J]. PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2020, 2020, : 531 - 535
  • [6] Diffusion Causal Models for Counterfactual Estimation
    Sanchez, Pedro
    Tsaftaris, Sotirios A.
    [J]. CONFERENCE ON CAUSAL LEARNING AND REASONING, VOL 177, 2022, 177
  • [7] DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models
    Cheng, Furui
    Ming, Yao
    Qu, Huamin
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 1438 - 1447
  • [8] Counterfactual Visual Explanations
    Goyal, Yash
    Wu, Ziyan
    Ernst, Jan
    Batra, Dhruv
    Parikh, Devi
    Lee, Stefan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [9] CSSE - An agnostic method of counterfactual, selected, and social explanations for classification models
    Balbino, Marcelo de Sousa
    Galvez, Luis Enrique Zarate
    Nobre, Cristiane Neri
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 228
  • [10] Counterfactual Causality and Historical Explanations
    Gerber, Doris
    [J]. EXPLANATION IN ACTION THEORY AND HISTORIOGRAPHY: CAUSAL AND TELEOLOGICAL APPROACHES, 2019, : 167 - 178