Fast TTTS iteration methods for implicit Runge-Kutta temporal discretization of Riesz space fractional advection-diffusion equations ?

被引:2
|
作者
She, Zi-Hang [1 ]
Qiu, Li-Min [2 ]
机构
[1] Hanshan Normal Univ, Dept Math, Chaozhou 521041, Peoples R China
[2] Belarusian Russian Univ, Dept Econ, Mogilev 212000, BELARUS
基金
中国博士后科学基金;
关键词
Riesz space fractional advection-diffusion; equation; Matrix splitting; Implicit Runge-Kutta method; Preconditioning; CG method; SPECTRAL-ANALYSIS; EFFICIENT PRECONDITIONER; CIRCULANT PRECONDITIONER; MULTIGRID METHOD; TOEPLITZ; CONVERGENCE; APPROXIMATIONS; SYSTEM;
D O I
10.1016/j.camwa.2023.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider fast numerical methods for linear systems arising from implicit Runge-Kutta temporal discretization methods (based on the fourth-order, 2-stage Gauss method) for one-and two-dimensional Riesz space fractional advection-diffusion equations (RSFADEs). An implicit Runge-Kutta-standard/shifted Grunwald difference scheme for RSFADEs is introduced, and its stability and convergence are also studied. In the one-dimensional case, the coefficient matrix of the discretized linear system is the sum of an identity matrix, a Toeplitz matrix and a square of Toeplitz matrix. We construct a class of Toeplitz times Toeplitz splitting (TTTS) iteration methods to solve the corresponding linear systems. We prove that it converges uniformly to the exact solution without imposing any additional condition, and the optimal parameters for the TTTS iteration method are given. Meanwhile, we design an induced sine transform based preconditioner for two-dimensional problems to accelerate the convergence rate of the conjugate gradient method. Theoretically, we prove that the spectra of the preconditioned matrices of the proposed methods are clustering around 1. Numerical results are presented to illustrate the effectiveness of the proposed methods.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 50 条
  • [1] Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations
    Calvo, MP
    de Frutos, J
    Novo, J
    APPLIED NUMERICAL MATHEMATICS, 2001, 37 (04) : 535 - 549
  • [2] Implicit Runge-Kutta and spectral Galerkin methods for Riesz space fractional/distributed-order diffusion equation
    Zhao, Jingjun
    Zhang, Yanming
    Xu, Yang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [3] IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES AND FINITE ELEMENTS WITH SYMMETRIC STABILIZATION FOR ADVECTION-DIFFUSION EQUATIONS
    Burman, Erik
    Ern, Alexandre
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (04): : 681 - 707
  • [4] AN ITERATION SCHEME FOR IMPLICIT RUNGE-KUTTA METHODS
    COOPER, GJ
    BUTCHER, JC
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1983, 3 (02) : 127 - 140
  • [5] A third order, implicit, finite volume, adaptive Runge-Kutta WENO scheme for advection-diffusion equations
    Arbogast, Todd
    Huang, Chieh-Sen
    Zhao, Xikai
    King, Danielle N.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 368
  • [6] Implicit Runge-Kutta Methods for the Discretization of Time Domain Integral Equations
    Wang, Xiaobo
    Weile, Daniel S.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (12) : 4651 - 4663
  • [7] Implicit Runge-Kutta and spectral Galerkin methods for the two-dimensional nonlinear Riesz space fractional diffusion equation
    Zhao, Jingjun
    Zhang, Yanming
    Xu, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
  • [8] A note on efficient preconditioner of implicit Runge-Kutta methods with application to fractional diffusion equations
    Chen, Hao
    Wang, Xiaoli
    Li, Xiaolin
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 351 : 116 - 123
  • [9] ON THE ALGEBRAIC EQUATIONS IN IMPLICIT RUNGE-KUTTA METHODS
    HUNDSDORFER, WH
    SPIJKER, MN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (03) : 583 - 594
  • [10] ANALYSIS OF PARALLEL DIAGONALLY IMPLICIT ITERATION OF RUNGE-KUTTA METHODS
    VANDERHOUWEN, PJ
    SOMMEIJER, BP
    APPLIED NUMERICAL MATHEMATICS, 1993, 11 (1-3) : 169 - 188