Small data machine learning in materials science

被引:217
|
作者
Xu, Pengcheng [1 ]
Ji, Xiaobo [2 ]
Li, Minjie [2 ]
Lu, Wencong [1 ,2 ,3 ]
机构
[1] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R China
[3] Zhejiang Lab, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金;
关键词
METHODOLOGIES; RECOGNITION; DISCOVERY; PLATFORM; DESIGN; DRIVEN;
D O I
10.1038/s41524-023-01000-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then, the workflow of materials machine learning has been introduced. Next, the methods of dealing with small data were introduced, including data extraction from publications, materials database construction, high-throughput computations and experiments from the data source level; modeling algorithms for small data and imbalanced learning from the algorithm level; active learning and transfer learning from the machine learning strategy level. Finally, the future directions for small data machine learning in materials science were proposed.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Small data machine learning in materials science
    Pengcheng Xu
    Xiaobo Ji
    Minjie Li
    Wencong Lu
    npj Computational Materials, 9
  • [2] Big data and machine learning for materials science
    Rodrigues J.F., Jr.
    Florea L.
    de Oliveira M.C.F.
    Diamond D.
    Oliveira O.N., Jr.
    Discover Materials, 1 (1):
  • [3] Data quantity governance for machine learning in materials science
    Yue Liu
    Zhengwei Yang
    Xinxin Zou
    Shuchang Ma
    Dahui Liu
    Maxim Avdeev
    Siqi Shi
    National Science Review, 2023, 10 (07) : 234 - 250
  • [4] A data ecosystem to support machine learning in materials science
    Ben Blaiszik
    Logan Ward
    Marcus Schwarting
    Jonathon Gaff
    Ryan Chard
    Daniel Pike
    Kyle Chard
    Ian Foster
    MRS Communications, 2019, 9 : 1125 - 1133
  • [5] A data ecosystem to support machine learning in materials science
    Blaiszik, Ben
    Ward, Logan
    Schwarting, Marcus
    Gaff, Jonathon
    Chard, Ryan
    Pike, Daniel
    Chard, Kyle
    Foster, Ian
    MRS COMMUNICATIONS, 2019, 9 (04) : 1125 - 1133
  • [6] Machine-Learning Metacomputing for Materials Science Data
    Steuben, J. C.
    Geltmacher, A. B.
    Rodriguez, S. N.
    Birnbaum, A. J.
    Graber, B. D.
    Rawlings, A. K.
    Iliopoulos, A. P.
    Michopoulos, J. G.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (11)
  • [7] Editorial: Machine Learning and Data Mining in Materials Science
    Huber, Norbert
    Kalidindi, Surya R.
    Klusemann, Benjamin
    Cyron, Christian J.
    FRONTIERS IN MATERIALS, 2020, 7
  • [8] Data quantity governance for machine learning in materials science
    Liu, Yue
    Yang, Zhengwei
    Zou, Xinxin
    Ma, Shuchang
    Liu, Dahui
    Avdeev, Maxim
    Shi, Siqi
    NATIONAL SCIENCE REVIEW, 2023, 10 (07)
  • [9] Machine learning and data science in soft materials engineering
    Ferguson, Andrew L.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (04)
  • [10] Machine learning strategies for small sample size in materials science
    Tao, Qiuling
    Yu, JinXin
    Mu, Xiangyu
    Jia, Xue
    Shi, Rongpei
    Yao, Zhifu
    Wang, Cuiping
    Zhang, Haijun
    Liu, Xingjun
    SCIENCE CHINA-MATERIALS, 2025, 68 (02) : 387 - 405