Applications of MXene-Based Single-Atom Catalysts

被引:60
|
作者
Bai, Xue [1 ]
Guan, Jingqi [1 ]
机构
[1] Jilin Univ, Inst Phys Chem, Coll Chem, 2519 Jiefang Rd, Changchun 130021, Peoples R China
来源
SMALL STRUCTURES | 2023年 / 4卷 / 07期
基金
中国国家自然科学基金;
关键词
batteries; electrocatalyses; MXenes; sensors; single-atom catalysts; HYDROGEN EVOLUTION REACTION; TRANSITION-METAL CARBIDES; NITROGEN-DOPED MXENE; 2-DIMENSIONAL MATERIALS; OXYGEN REDUCTION; CO OXIDATION; PERFORMANCE; TI3C2TX; MECHANISMS; NANOSHEETS;
D O I
10.1002/sstr.202200354
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysts (SACs) consist of isolated metal sites on the support through stable coordination bond, which usually have high catalytic activity and selectivity. With large surface area and electron tunability, metallic carbides, nitrides, or carbonic nitrides (MXenes) are suitable carriers for supporting isolated single-metal atoms. The abundant surface-functional groups and vacancy defects on MXenes are the ideal anchoring sites for isolated metal atoms. Herein, the advanced synthesis and characterization methods for MXene-based SACs are first introduced. Three strategies (adsorption at functional groups, anchoring at metal vacancies, and anchoring at surface terminating group vacancies) appear to be feasible in ensuring the non-aggregation of single-metal atoms, which are attributed to the strong bonding between the single-metal atoms and the carrier. The applications of MXene-based SACs in electrocatalysis (including hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, carbon dioxide reduction reaction, and nitrogen reduction reaction), energy storage (including Li-ion batteries, metal-air batteries, and supercapacitors), and sensors (including gas sensors and biological sensors) are fundamentally reviewed. Finally, own insight on the current challenges and prospects of MXene-based SACs is presented.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Synthesis of MXene-based single-atom catalysts for energy conversion applications
    Din, Muhammad Aizaz Ud
    Shah, Syed Shoaib Ahmad
    Javed, Muhammad Sufyan
    Sohail, Manzar
    ur Rehman, Aziz
    Nazir, Muhammad Altaf
    Assiri, Mohammed A.
    Najam, Tayyaba
    Cheng, Nanpu
    CHEMICAL ENGINEERING JOURNAL, 2023, 474
  • [2] MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis
    Jing, Yuanju
    Kang, Chun
    Lin, Yanxin
    Gao, Jie
    Wang, Xinbo
    PROGRESS IN CHEMISTRY, 2022, 34 (11) : 2373 - 2385
  • [3] Valence electron matching law for MXene-based single-atom catalysts
    Pei Song
    Yuhang Zhou
    Zishan Luo
    Hang Zhang
    Xi Sun
    Sen Lu
    Zepeng Jia
    Hong Cui
    Weizhi Tian
    Rong Feng
    Lingxia Jin
    Hongkuan Yuan
    Journal of Energy Chemistry, 2025, 101 (02) : 641 - 650
  • [4] Valence electron matching law for MXene-based single-atom catalysts
    Cui, Hong (hongcui@snut.edu.cn), 2025, 101 : 641 - 650
  • [5] Screening MXene-based single-atom catalysts for selective nitrate-to-ammonia electroreduction
    Wang, Mengting
    Hu, Tao
    Wang, Changhong
    Du, Feng
    Yang, Hongbin
    Sun, Wei
    Guo, Chunxian
    Li, Chang Ming
    SCIENCE CHINA-MATERIALS, 2023, 66 (07) : 2750 - 2758
  • [6] MXene-Based Single-Atom Catalysts for Electrochemical Reduction of CO2 to Hydrocarbon Fuels
    Athawale, A.
    Abraham, B. Moses
    Jyothirmai, M. V.
    Singh, Jayant K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (51): : 24542 - 24551
  • [7] Applications of single-atom catalysts
    Zhang, Qiaoqiao
    Guan, Jingqi
    NANO RESEARCH, 2022, 15 (01) : 38 - 70
  • [8] Applications of single-atom catalysts
    Qiaoqiao Zhang
    Jingqi Guan
    Nano Research, 2022, 15 : 38 - 70
  • [9] Why do Single-Atom Alloys Catalysts Outperform both Single-Atom Catalysts and Nanocatalysts on MXene?
    Guan, Shuyan
    Yuan, Zhenluo
    Zhuang, Zechao
    Zhang, Huanhuan
    Wen, Hao
    Fan, Yanping
    Li, Baojun
    Wang, Dingsheng
    Liu, Baozhong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (04)
  • [10] Environmental applications of single-atom catalysts based on graphdiyne
    Zhao, Mengdie
    Jiang, Liyun
    Yu, Qi
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (18) : 5154 - 5174