Explainable Artificial Intelligence for Interpretable Data Minimization

被引:0
|
作者
Becker, Maximilian [1 ]
Toprak, Emrah [1 ]
Beyerer, Juergen [2 ]
机构
[1] Karlsruhe Inst Technol, Vis & Fus Lab, Karlsruhe, Germany
[2] Fraunhofer IOSB, Karlsruhe, Germany
关键词
XAI; Data Minimization; Counterfactual Explanations;
D O I
10.1109/ICDMW60847.2023.00119
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Black box models such as deep neural networks are increasingly being deployed in high-stakes fields, including justice, health, and finance. Furthermore, they require a huge amount of data, and such data often contains personal information. However, the principle of data minimization in the European Union's General Data Protection Regulation requires collecting only the data that is essential to fulfilling a particular purpose. Implementing data minimization for black box models can be difficult because it involves identifying the minimum set of variables that are relevant to the model's prediction, which may not be apparent without access to the model's inner workings. In addition, users are often reluctant to share all their personal information. We propose an interactive system to reduce the amount of personal data by determining the minimal set of features required for a correct prediction using explainable artificial intelligence techniques. Our proposed method can inform the user whether the provided variables contain enough information for the model to make accurate predictions or if additional variables are necessary. This humancentered approach can enable providers to minimize the amount of personal data collected for analysis and may increase the user's trust and acceptance of the system.
引用
收藏
页码:885 / 893
页数:9
相关论文
共 50 条
  • [1] Explainable artificial intelligence and interpretable machine learning for agricultural data analysis
    Ryo, Masahiro
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2022, 6 : 257 - 265
  • [2] Cybertrust: From Explainable to Actionable and Interpretable Artificial Intelligence
    Linkov, Igor
    Galaitsi, Stephanie
    Trump, Benjamin D.
    Keisler, Jeffrey M.
    Kott, Alexander
    COMPUTER, 2020, 53 (09) : 91 - 96
  • [3] A Review on Interpretable and Explainable Artificial Intelligence in Hydroclimatic Applications
    Basagaoglu, Hakan
    Chakraborty, Debaditya
    Do Lago, Cesar
    Gutierrez, Lilianna
    Sahinli, Mehmet Arif
    Giacomoni, Marcio
    Furl, Chad
    Mirchi, Ali
    Moriasi, Daniel
    Sengor, Sema Sevinc
    WATER, 2022, 14 (08)
  • [4] Toward Explainable and Interpretable Building Energy Modelling: An Explainable Artificial Intelligence Approach
    Zhang, Wei
    Liu, Fang
    Wen, Yonggang
    Nee, Bernard
    BUILDSYS'21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, 2021, : 255 - 258
  • [5] Guest Editorial: New Developments in Explainable and Interpretable Artificial Intelligence
    Subbalakshmi K.P.S.
    Samek W.
    Hu X.B.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (04): : 1427 - 1428
  • [6] Special issue on “Towards robust explainable and interpretable artificial intelligence”
    Stefania Tomasiello
    Feng Feng
    Yichuan Zhao
    Evolutionary Intelligence, 2024, 17 : 417 - 418
  • [7] Special issue on "Towards robust explainable and interpretable artificial intelligence"
    Tomasiello, Stefania
    Feng, Feng
    Zhao, Yichuan
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (1) : 417 - 418
  • [8] Explainable vs. interpretable artificial intelligence frameworks in oncology
    Bertsimas, Dimitris
    Margonis, Georgios Antonios
    TRANSLATIONAL CANCER RESEARCH, 2023, 12 (02) : 217 - 220
  • [9] Automated and Interpretable Fake News Detection With Explainable Artificial Intelligence
    Giri, Moyank
    Eswaran, Sivaraman
    Honnavalli, Prasad
    Daniel, D.
    JOURNAL OF APPLIED SECURITY RESEARCH, 2024,
  • [10] Explainable and interpretable artificial intelligence in medicine: a systematic bibliometric review
    Frasca M.
    La Torre D.
    Pravettoni G.
    Cutica I.
    Discov. Artif. Intell., 2024, 1 (1):