BIFURCATION OF LIMIT CYCLE AT THE INFINITY ON A CENTER MANIFOLDS IN SPACE VECTOR FIELD

被引:0
|
作者
Du, Chaoxiong [1 ]
Huang, Wentao [2 ]
机构
[1] Changsha Normal Univ, Sch Math Sci, Changsha 410100, Hunan, Peoples R China
[2] Guangxi Normal Univ, Coll Math & Stat, Guilin 541006, Guangxi, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Space vector field; infinity; limit cycle bifurcation; focal values; SINGULAR POINT; HOPF-BIFURCATION; SYSTEMS;
D O I
10.11948/20230254
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the problem of large amplitude limit cycles bifurcation at infinity in space vector field. By making two appropriate transformations and making use of singular values methods on a center manifold to compute focal values carefully, we obtain the simplified expressions of the first five focal values at the infinity by using symbolic calculation methods. Further, we show the infinity can bifurcate 5 large limit cycles.
引用
收藏
页码:408 / 423
页数:16
相关论文
共 50 条
  • [1] Limit Cycle Bifurcation of Infinity and Degenerate Singular Point in Three-Dimensional Vector Field
    Du Chaoxiong
    Liu Yirong
    Qi, Zhang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (09):
  • [2] Bifurcation of Limit Cycles and Pseudo-Isochronicity at Infinity in a Septic Polynomial Vector Field
    Wu, Yusen
    Liu, Luju
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2012, 11 (02) : 417 - 433
  • [3] Bifurcation of Limit Cycles and Pseudo-Isochronicity at Infinity in a Septic Polynomial Vector Field
    Yusen Wu
    Luju Liu
    Qualitative Theory of Dynamical Systems, 2012, 11 : 417 - 433
  • [4] LIMIT CYCLE BIFURCATION FOR A NILPOTENT SYSTEM IN Z3-EQUIVARIANT VECTOR FIELD
    Du, Chaoxiong
    Wang, Qinlong
    Liu, Yirong
    Zhang, Qi
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (04): : 1463 - 1477
  • [5] BIFURCATION OF LIMIT CYCLES AND ISOCHRONOUS CENTER AT INFINITY FOR A CLASS OF DIFFERENTIAL SYSTEMS
    Huang, Wentao
    Liu, Yirong
    Zhang, Weinian
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2011, 1 (03): : 397 - 410
  • [6] The center conditions and bifurcation of limit cycles at the infinity for a cubic polynomial system
    Zhang, Lina
    Liu, Yirong
    Jiang, Xuejiao
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (04) : 1360 - 1370
  • [7] DYNAMICS OF A SYSTEM EXHIBITING THE GLOBAL BIFURCATION OF A LIMIT-CYCLE AT INFINITY
    KEITH, WL
    RAND, RH
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1985, 20 (04) : 325 - 338
  • [8] Melnikov function and limit cycle bifurcation from a nilpotent center
    Jiang, Jiao
    Han, Maoan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (03): : 182 - 193
  • [9] On the limit cycle bifurcation of a polynomial system from a global center
    Xiong, Yanqin
    Han, Maoan
    ANALYSIS AND APPLICATIONS, 2014, 12 (03) : 251 - 268
  • [10] CENTER MANIFOLDS ARE NOT C-INFINITY
    VANSTRIEN, SJ
    MATHEMATISCHE ZEITSCHRIFT, 1979, 166 (02) : 143 - 145