On the Besicovitch-stability of noisy random tilings

被引:1
|
作者
Leo, Gayral [1 ]
Mathieu, Sablik [1 ]
机构
[1] Univ Toulouse III Paul Sabatier, Toulouse, France
来源
关键词
subshift of finite type; stability; Besicovitch distance; percolation; Robinson tiling; ORDER;
D O I
10.1214/23-EJP917
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce a framework for studying a subshift of finite type (SFT) with noise, allowing some amount of forbidden patterns to appear. Using the Besicovitch distance, which permits a global comparison of configurations, we then study the closeness of measures on noisy configurations to the non-noisy case as the amount of noise goes to 0. Our first main result is the full classification of the (in)stability in the one-dimensional case. Our second main result is a stability property under Bernoulli noise for higher-dimensional periodic SFTs, which we finally extend to an aperiodic example through a variant of the Robinson tiling.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Arithmetical Hierarchy of the Besicovitch-Stability of Noisy Tilings
    Léo Gayral
    Mathieu Sablik
    Theory of Computing Systems, 2023, 67 : 1209 - 1240
  • [2] Arithmetical Hierarchy of the Besicovitch-Stability of Noisy Tilings
    Gayral, Leo
    Sablik, Mathieu
    THEORY OF COMPUTING SYSTEMS, 2023, 67 (06) : 1209 - 1240
  • [3] Random trimer tilings
    Ghosh, Anandamohan
    Dhar, Deepak
    Jacobsen, Jesper L.
    PHYSICAL REVIEW E, 2007, 75 (01):
  • [4] Random tilings with the GPU
    Keating, David
    Sridhar, Ananth
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (09)
  • [5] An alternative description of random tilings
    Richard, C
    FERROELECTRICS, 2001, 250 (1-4) : 169 - 174
  • [6] Molecular random tilings as glasses
    Garrahan, Juan P.
    Stannard, Andrew
    Blunt, Matthew O.
    Beton, Peter H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (36) : 15209 - 15213
  • [7] RANDOM SQUARE TRIANGLE TILINGS
    OXBORROW, M
    HENLEY, CL
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1993, 153 : 210 - 214
  • [8] Random tilings: concepts and examples
    Richard, C
    Hoffe, M
    Hermisson, J
    Baake, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (30): : 6385 - 6408
  • [9] RANDOM SUBSTITUTION TILINGS AND DEVIATION PHENOMENA
    Schmieding, Scott
    Trevino, Rodrigo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (08) : 3869 - 3902
  • [10] Programmable disorder in random DNA tilings
    Tikhomirov, Grigory
    Petersen, Philip
    Qian, Lulu
    NATURE NANOTECHNOLOGY, 2017, 12 (03) : 251 - +