Toward Automated Detection of Silent Cerebral Infarcts in Children and Young Adults With Sickle Cell Anemia

被引:1
|
作者
Chen, Yasheng [1 ]
Wang, Yan [1 ]
Phuah, Chia-Ling [1 ]
Fields, Melanie E. [2 ]
Guilliams, Kristin P. [3 ]
Fellah, Slim [1 ]
Reis, Martin N. [4 ]
Binkley, Michael M. [1 ]
An, Hongyu [1 ,4 ]
Lee, Jin-Moo [1 ,4 ]
McKinstry, Robert C. [4 ]
Jordan, Lori C. [5 ]
DeBaun, Michael R. [6 ]
Ford, Andria L. [1 ,4 ,7 ]
机构
[1] Washington Univ, Sch Med, Dept Neurol, St Louis, MO USA
[2] Washington Univ, Sch Med, Div Pediat Hematol Oncol, St Louis, MO USA
[3] Washington Univ, Sch Med, Div Pediat Neurol, St Louis, MO USA
[4] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO USA
[5] Vanderbilt Univ Med, Dept Pediat, Div Pediat Neurol, Nashville, TN USA
[6] Vanderbilt Univ, Vanderbilt Meharry Ctr Excellence Sickle Cell Dis, Dept Pediat, Div Hematol & Oncol,Med Ctr, Nashville, TN USA
[7] Washington Univ, Sch Med, Dept Neurol, 660 S Euclid Ave,Campus Box 8111, St Louis, MO 63110 USA
基金
美国国家卫生研究院;
关键词
cerebral infarct; deep learning; diagnostic imaging; sickle cell anemia; white matter diseases; PREVALENT; DISEASE; INJURY; TRIAL;
D O I
10.1161/STROKEAHA.123.042683
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND:Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We hypothesized that deep learning may permit automated SCI detection in children and young adults with SCA as a tool to identify the presence and extent of SCI in clinical and research settings. METHODS:We utilized UNet-a deep learning model-for fully automated SCI segmentation. We trained and optimized UNet using brain magnetic resonance imaging from the SIT trial (Silent Infarct Transfusion). Neuroradiologists provided the ground truth for SCI diagnosis, while a vascular neurologist manually delineated SCI on fluid-attenuated inversion recovery and provided the ground truth for SCI segmentation. UNet was optimized for the highest spatial overlap between automatic and manual delineation (dice similarity coefficient). The optimized UNet was externally validated using an independent single-center prospective cohort of SCA participants. Model performance was evaluated through sensitivity and accuracy (%correct cases) for SCI diagnosis, dice similarity coefficient, intraclass correlation coefficient (metric of volumetric agreement), and Spearman correlation. RESULTS:The SIT trial (n=926; 31% with SCI; median age, 8.9 years) and external validation (n=80; 50% with SCI; age, 11.5 years) cohorts had small median lesion volumes of 0.40 and 0.25 mL, respectively. Compared with the neuroradiology diagnosis, UNet predicted SCI presence with 100% sensitivity and 74% accuracy. In magnetic resonance imaging with SCI, UNet reached a moderate spatial agreement (dice similarity coefficient, 0.48) and high volumetric agreement (intraclass correlation coefficient, 0.76; & rho;=0.72; P<0.001) between automatic and manual segmentations. CONCLUSIONS:UNet, trained using a large pediatric SCA magnetic resonance imaging data set, sensitively detected small SCI in children and young adults with SCA. While additional training is needed, UNet may be integrated into the clinical workflow as a screening tool, aiding in SCI diagnosis.
引用
收藏
页码:2096 / 2104
页数:9
相关论文
共 50 条
  • [1] Silent cerebral infarcts and cerebral aneurysms are prevalent in adults with sickle cell anemia
    Kassim, Adetola A.
    Pruthi, Sumit
    Day, Matthew
    Rodeghier, Mark
    Gindville, Melissa C.
    Brodsky, Max A.
    DeBaun, Michael R.
    Jordan, Lori C.
    BLOOD, 2016, 127 (16) : 2038 - 2040
  • [2] Silent infarcts in children with sickle cell anemia and abnormal cerebral artery velocity
    Pegelow, CH
    Wang, W
    Granger, S
    Hsu, LL
    Vichinsky, E
    Moser, FG
    Bello, J
    Zimmerman, RA
    Adams, RJ
    Brambilla, D
    ARCHIVES OF NEUROLOGY, 2001, 58 (12) : 2017 - 2021
  • [3] Transfusions for Silent Cerebral Infarcts in Sickle Cell Anemia REPLY
    DeBaun, Michael R.
    Casella, James F.
    NEW ENGLAND JOURNAL OF MEDICINE, 2014, 371 (19): : 1841 - 1842
  • [4] Silent infarcts in young children with sickle cell disease
    Kwiatkowski, Janet L.
    Zimmerman, Robert A.
    Pollock, Avrum N.
    Seto, Wendy
    Smith-Whitley, Kim
    Shults, Justine
    Blackwood-Chirchir, Anne
    Ohene-Frempong, Kwaku
    BRITISH JOURNAL OF HAEMATOLOGY, 2009, 146 (03) : 300 - 305
  • [5] Distribution of Silent Cerebral Infarcts in Adults With Sickle Cell Disease
    Jones, R. Sky
    Ford, Andria L.
    Donahue, Manus J.
    Fellah, Slim
    Davis, L. Taylor
    Pruthi, Sumit
    Balamurugan, Charu
    Cohen, Rachel
    Davis, Samantha
    Debaun, Michael R.
    Kassim, Adetola A.
    Rodeghier, Mark
    Jordan, Lori C.
    NEUROLOGY, 2024, 102 (10)
  • [6] Distribution of Silent Cerebral Infarcts in Adults With Sickle Cell Disease
    Jordan, Lori C.
    Jones, R. Sky
    Debaun, Michael R.
    Ford, Andria L.
    NEUROLOGY, 2025, 104 (02)
  • [7] Controlled Trial of Transfusions for Silent Cerebral Infarcts in Sickle Cell Anemia
    DeBaun, M. R.
    Gordon, M.
    McKinstry, R. C.
    Noetzel, M. J.
    White, D. A.
    Sarnaik, S. A.
    Meier, E. R.
    Howard, T. H.
    Majumdar, S.
    Inusa, B. P. D.
    Telfer, P. T.
    Kirby-Allen, M.
    McCavit, T. L.
    Kamdem, A.
    Airewele, G.
    Woods, G. M.
    Berman, B.
    Panepinto, J. A.
    Fuh, B. R.
    Kwiatkowski, J. L.
    King, A. A.
    Fixler, J. M.
    Rhodes, M. M.
    Thompson, A. A.
    Heiny, M. E.
    Redding-Lallinger, R. C.
    Kirkham, F. J.
    Dixon, N.
    Gonzalez, C. E.
    Kalinyak, K. A.
    Quinn, C. T.
    Strouse, J. J.
    Miller, J. P.
    Lehmann, H.
    Kraut, M. A.
    Ball, W. S., Jr.
    Hirtz, D.
    Casella, J. F.
    NEW ENGLAND JOURNAL OF MEDICINE, 2014, 371 (08): : 699 - 710
  • [8] Reproducibility of Detecting Silent Cerebral Infarcts in Pediatric Sickle Cell Anemia
    Liem, Robert I.
    Liu, Jingxia
    Gordon, Mae O.
    Vendt, Bruce A.
    McKinstry, Robert C., III
    Kraut, Michael A.
    Strouse, John J.
    Ball, William S.
    DeBaun, Michael R.
    JOURNAL OF CHILD NEUROLOGY, 2014, 29 (12) : 1685 - 1691
  • [9] Silent cerebral infarcts in sickle cell anemia: A risk factor analysis
    Kinney, TR
    Sleeper, LA
    Wang, WC
    Zimmerman, RA
    Pegelow, CH
    Ohene-Frempong, K
    Wethers, DL
    Bello, JA
    Vichinsky, EP
    Moser, FG
    Gallagher, DM
    DeBaun, MR
    Platt, OS
    Miller, ST
    PEDIATRICS, 1999, 103 (03) : 640 - 645
  • [10] Progressive Silent Cerebral Infarcts Are Prevalent in Adults with Sickle Cell Anemia but Moderate-Severe Cognitive Abnormalities Are Independent of Preexisting Silent Cerebral Infarcts
    Idris, Ibrahim Musa
    Gwarzo, Dalha H.
    Iguda, Shamsu
    Aminu, Faruk
    Hikima, Mustapha Shuaibu
    Saleh, Mohammed Kabir
    Suwaid, Mohammad Abba
    Ibrahim, Aliyu
    Ibrahim, Hauwa
    Kana, Shehu
    Haruna, Rabia Abubakar
    Galadanci, Jamil Aliyu
    Hussain, Nafiu
    Rodeghier, Mark
    Hyacinth, Hyacinth, I
    King, Allison A.
    DeBaun, Michael R.
    BLOOD, 2022, 140 : 1629 - 1631