Thermal Fault Diagnosis of Electrical Equipment in Substations Using Lightweight Convolutional Neural Network

被引:9
|
作者
Zhou, Shuaijie [1 ]
Liu, Jiefeng [1 ]
Fan, Xianhao [1 ]
Fu, Qi [1 ]
Goh, Hui Hwang [1 ]
机构
[1] Guangxi Univ, Guangxi Key Lab Power Syst Optimizat & Energy Tech, Nanning 530004, Peoples R China
关键词
Convolution; Substations; Convolutional neural networks; Image segmentation; Kernel; Decoding; Infrared imaging; Convolutional neural network (CNN); electrical equipment monitoring; infrared images; lightweight; U-Net-based segmentation network; SEGMENTATION;
D O I
10.1109/TIM.2023.3240210
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Real-time equipment condition monitoring is crucial to ensure the regular operation of the electric system. However, the deployed heavy convolutional neural networks (CNNs) are defective for edge computation and offline diagnosis. The purpose of this article is to present a system for detecting overheating faults of substation equipment using infrared photos and U-Net deep learning techniques. First, a stepwise encoder employs a lightweight CNN (LCNN) based on inverted residuals with depthwise separable convolution. The fault location is then decoded in the decoder using stepwise upsampling and nearest-neighbor interpolation. We additionally incorporate low-level detail feature information from the encoder to include additional fault data. Finally, testing findings on our dataset demonstrated the proposed method's superior reliability and efficiency under a variety of evaluation metrics. Ultimately, we reached a lighter structure and leading estimation with a small training dataset, so our method is well-suited for deployment on mobile devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Thermal Fault Diagnosis of Electrical Equipment in Substations Using Lightweight Convolutional Neural Network
    Zhou, Shuaijie
    Liu, Jiefeng
    Fan, Xianhao
    Fu, Qi
    Goh, Hui Hwang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [2] Thermal Fault Diagnosis of Electrical Equipment in Substations Based on Image Fusion
    Lu, Mingshu
    Liu, Haiting
    Yuan, Xipeng
    TRAITEMENT DU SIGNAL, 2021, 38 (04) : 1095 - 1102
  • [3] SEGMENTATION OF ELECTRICAL SUBSTATIONS USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Mesvari, M.
    Shah-Hosseini, R.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 495 - 500
  • [4] Interpretable Convolutional Neural Network for Mechanical Equipment Fault Diagnosis
    Chen, Qian
    Chen, Kangkang
    Dong, Xingjian
    Huangfu, Yifan
    Peng, Zhike
    Meng, Guang
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2024, 60 (12): : 65 - 76
  • [5] Fault Diagnosis Method of Mechanical Equipment Based on Convolutional Neural Network
    Zhou, Jun
    Zhang, Wenfeng
    Sun, WeiZhao
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT CONTROL AND ARTIFICIAL INTELLIGENCE (RICAI 2019), 2019, : 459 - 465
  • [6] Rotating machinery fault diagnosis using dimension expansion and AntisymNet lightweight convolutional neural network
    Luo, Zhiyong
    Peng, Yueyue
    Dong, Xin
    Qian, Hao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [7] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Zhang, Xiaochen
    Li, Hanwen
    Meng, Weiying
    Liu, Yaofeng
    Zhou, Peng
    He, Cai
    Zhao, Qingbo
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (10)
  • [8] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Xiaochen Zhang
    Hanwen Li
    Weiying Meng
    Yaofeng Liu
    Peng Zhou
    Cai He
    Qingbo Zhao
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [9] Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
    Yan, Jing
    Liu, Tingliang
    Ye, Xinyu
    Jing, Qianzhen
    Dai, Yuannan
    PLOS ONE, 2021, 16 (08):
  • [10] Malaria Diagnosis Using a Lightweight Deep Convolutional Neural Network
    Magotra, Varun
    Rohil, Mukesh Kumar
    INTERNATIONAL JOURNAL OF TELEMEDICINE AND APPLICATIONS, 2022, 2022