No dimension-free deterministic algorithm computes approximate stationarities of Lipschitzians

被引:1
|
作者
Tian, Lai [1 ]
So, Anthony Man-Cho [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
关键词
Stationary points; Black-box optimization; Information-based complexity; Dimension-free rates; Lower bounds; GRADIENT SAMPLING ALGORITHM; LOWER BOUNDS; NONSMOOTH; OPTIMIZATION; COMPLEXITY;
D O I
10.1007/s10107-023-02031-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the oracle complexity of computing an approximate stationary point of a Lipschitz function. When the function is smooth, it is well known that the simple deterministic gradient method has finite dimension-free oracle complexity. However, when the function can be nonsmooth, it is only recently that a randomized algorithm with finite dimension-free oracle complexity has been developed. In this paper, we show that no deterministic algorithm can do the same. Moreover, even without the dimension-free requirement, we show that any finite-time deterministic method cannot be general zero-respecting. In particular, this implies that a natural derandomization of the aforementioned randomized algorithm cannot have finite-time complexity. Our results reveal a fundamental hurdle in modern large-scale nonconvex nonsmooth optimization.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Hyperbolic geometry, dimension-free
    Benz, W
    [J]. Non-Euclidean Geometries, 2006, 581 : 97 - 107
  • [2] Dimension-free convex optimization
    不详
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2015, 8 (3-4): : 262 - 295
  • [3] On dimension-free Sobolev imbeddings II
    Krbec, Miroslav
    Schmeisser, Hans-Juergen
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2012, 25 (01): : 247 - 265
  • [4] Dimension-Free Empirical Entropy Estimation
    Cohen, Doron
    Kontorovich, Aryeh
    Koolyk, Aaron
    Wolfer, Geoffrey
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [5] Dimension-Free Empirical Entropy Estimation
    Cohen, Doron
    Kontorovich, Aryeh
    Koolyk, Aaron
    Wolfer, Geoffrey
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (05) : 3190 - 3202
  • [6] Weak dimension-free concentration of measure
    Bobkov, SG
    Houdré, C
    [J]. BERNOULLI, 2000, 6 (04) : 621 - 632
  • [7] On dimension-free Sobolev imbeddings II
    Miroslav Krbec
    Hans-Jürgen Schmeisser
    [J]. Revista Matemática Complutense, 2012, 25 : 247 - 265
  • [8] DIMENSION-FREE UNIFORMITY WITH APPLICATIONS, I
    Beck, Jozsef
    [J]. MATHEMATIKA, 2017, 63 (03) : 734 - 761
  • [9] On dimension-free Sobolev imbeddings I
    Krbec, Miroslav
    Schmeisser, Hans-Juergen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (01) : 114 - 125
  • [10] Dimension-Free Harnack Inequalities on Spaces
    Li, Huaiqian
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (04) : 1280 - 1297