Additive Bayesian Network Modeling with the R Package abn

被引:6
|
作者
Kratzer, Gilles [1 ]
Lewis, Fraser [2 ]
Comin, Arianna [3 ]
Pittavino, Marta [4 ]
Furrer, Reinhard [1 ]
机构
[1] Univ Zurich, Zurich, Switzerland
[2] GSK Pharmaceut Mfg, Brentford, England
[3] Swedish Natl Vet Inst, Uppsala, Sweden
[4] Univ Geneva, Geneva, Switzerland
来源
JOURNAL OF STATISTICAL SOFTWARE | 2023年 / 105卷 / 08期
关键词
Keywords; structure learning; graphical models; greedy search; exact search; scoring algo; rithm; GLM; graph theory; APPROXIMATE INFERENCE; GRAPHICAL MODELS; INFORMATION;
D O I
10.18637/jss.v105.i08
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R package abn is designed to fit additive Bayesian network models to observational datasets and contains routines to score Bayesian networks based on Bayesian or information theoretic formulations of generalized linear models. It is equipped with exact search and greedy search algorithms to select the best network, and supports continuous, discrete and count data in the same model and input of prior knowledge at a structural level. The Bayesian implementation supports random effects to control for one-layer clustering. In this paper, we give an overview of the methodology and illustrate the package's functionality using a veterinary dataset concerned with respiratory diseases in commercial swine production.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 50 条
  • [1] Advanced Bayesian Multilevel Modeling with the R Package brms
    Buerkner, Paul-Christian
    R JOURNAL, 2018, 10 (01): : 395 - 411
  • [2] disaggregation: An R Package for Bayesian Spatial Disaggregation Modeling
    Nandi, Anita K.
    Lucas, Tim C. D.
    Arambepola, Rohan
    Gething, Peter
    Weiss, Daniel J.
    JOURNAL OF STATISTICAL SOFTWARE, 2023, 106 (11):
  • [3] New Frontiers in Bayesian Modeling Using the INLA Package in R
    van Niekerk, Janet
    Bakka, Haakon
    Rue, Havard
    Schenk, Olaf
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (02): : 1 - 28
  • [4] CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors
    Lee, Duncan
    JOURNAL OF STATISTICAL SOFTWARE, 2013, 55 (13): : 1 - 24
  • [5] iBMQ: a R/Bioconductor package for integrated Bayesian modeling of eQTL data
    Imholte, Greg C.
    Scott-Boyer, Marie-Pier
    Labbe, Aurelie
    Deschepper, Christian F.
    Gottardo, Raphael
    BIOINFORMATICS, 2013, 29 (21) : 2797 - 2798
  • [6] Bayesian network feature finder (BANFF): an R package for gene network feature selection
    Lan, Zhou
    Zhao, Yize
    Kang, Jian
    Yu, Tianwei
    BIOINFORMATICS, 2016, 32 (23) : 3685 - 3687
  • [7] Nonparametric Machine Learning and Efficient Computation with Bayesian Additive Regression Trees: The BART R Package
    Sparapani, Rodney
    Spanbauer, Charles
    McCulloch, Robert
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 97 (01): : 1 - 66
  • [8] bnstruct: an R package for Bayesian Network structure learning in the presence of missing data
    Franzin, Alberto
    Sambo, Francesco
    Di Camillo, Barbara
    BIOINFORMATICS, 2017, 33 (08) : 1250 - 1252
  • [9] The bayesvl package: An R package for implementing and visualizing Bayesian statistics
    La, Viet-Phuong
    Vuong, Quan-Hoang
    Tran, Trung
    Nguyen, Minh-Hoang
    Ho, Manh-Toan
    Ho, Manh-Toan
    SOFTWAREX, 2022, 20
  • [10] BNPmix: An R Package for Bayesian Nonparametric Modeling via Pitman-Yor Mixtures
    Corradin, Riccardo
    Canale, Antonio
    Nipoti, Bernardo
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (15): : 1 - 33