The Obata First Eigenvalue Theorem on a Seven-Dimensional Quaternionic Contact Manifold

被引:0
|
作者
Mohamed, Abdelrahman [1 ]
Vassilev, Dimiter [2 ]
机构
[1] Univ North Alabama, Dept Math, Florence, AL 35630 USA
[2] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
关键词
Sub-Riemannian geometry; CR and quaternionic contact structures; Sobolev inequality; Yamabe equation; Lichnerowicz eigenvalue estimate; Obata theorem; SUB-LAPLACIAN; YAMABE PROBLEM; CR; SPHERE;
D O I
10.1007/s12220-022-01072-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an Obata type rigidity result for the first eigenvalue of the sub-Laplacian on a compact seven-dimensional quaternionic contact manifold which satisfies a Lichnerowicz-type bound on its quaternionic contact Ricci curvature and has a non-negative Paneitz P-function. In particular, under the stated conditions, the lowest possible eigenvalue of the sub-Laplacian is achieved if and only if the manifold is qc-equivalent to the standard 3-Sasakian sphere.
引用
收藏
页数:30
相关论文
共 14 条