On the eccentric distance sum of trees with given maximum degree

被引:1
|
作者
Zhou, Ting [1 ]
Miao, Lianying [1 ]
Song, Wenyao [2 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221008, Jiangsu, Peoples R China
[2] Zaozhuang Univ, Sch Math & Stat, Zaozhuang 277160, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Tree; Eccentric distance sum; Maximum degree; EXTREMAL VALUES; CONNECTIVITY; RESPECT; NUMBER; INDEX;
D O I
10.1016/j.dam.2024.01.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected graph. The eccentric distance sum (EDS) of G is defined as xi d(G) = n-ary sumation vEV(G) epsilon G(v)DG(v), where epsilon G(v) is the eccentricity of the vertex v and DG(v) = n-ary sumation uEV(G) dG(u, v) is the sum of all distances from the vertex v. We denote the set of trees with order n and maximum degree increment by Tn, increment . In 2015, the tree having the maximal EDS among all trees in Tn, increment was determined (Miao, 2015). In this paper, the tree having the second maximal EDS among all trees in Tn, increment is characterized. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 50 条
  • [1] On the extremal values of the eccentric distance sum of trees with a given maximum degree
    Miao, Lianying
    Pang, Jingru
    Xu, Shoujun
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 375 - 383
  • [2] On the extremal values of the eccentric distance sum of trees with a given domination number
    Miao, Lianying
    Pang, Shiyou
    Liu, Fang
    Wang, Eryan
    Guo, Xiaoqing
    DISCRETE APPLIED MATHEMATICS, 2017, 229 : 113 - 120
  • [3] The minimum eccentric distance sum of trees with given distance k-domination number
    Pei, Lidan
    Pan, Xiangfeng
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (04)
  • [4] The eccentric distance sum, the Harary index and the degree powers of graphs with given diameter
    Liu, Weijun
    Yu, Guihai
    Qu, Hui
    Ilic, Aleksandar
    ARS COMBINATORIA, 2016, 126 : 269 - 280
  • [5] On eccentric distance sum and degree distance of graphs
    Hua, Hongbo
    Wang, Hongzhuan
    Hu, Xiaolan
    DISCRETE APPLIED MATHEMATICS, 2018, 250 : 262 - 275
  • [6] On eccentric distance sum and minimum degree
    Mukungunugwa, Vivian
    Mukwembi, Simon
    DISCRETE APPLIED MATHEMATICS, 2014, 175 : 55 - 61
  • [7] Extremal values on the eccentric distance sum of trees
    Geng, Xianya
    Li, Shuchao
    Zhang, Meng
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) : 2427 - 2439
  • [8] On the General Eccentric Distance Sum of Graphs and Trees
    Feyissa, Yetneberk Kuma
    Imran, Muhammad
    Vetrik, Tomas
    Hunde, Natea
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2022, 13 (04): : 239 - 252
  • [9] On the extremal values of the eccentric distance sum of trees
    Li, Shuchao
    Zhang, Meng
    Yu, Guihai
    Feng, Lihua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (01) : 99 - 112
  • [10] On the extremal values of the eccentric distance sum of trees
    Miao, Lianying
    Cao, Qianqiu
    Cui, Na
    Pang, Shiyou
    DISCRETE APPLIED MATHEMATICS, 2015, 186 : 199 - 206