Machine Learning Prediction of Collagen Fiber Orientation and Proteoglycan Content From Multiparametric Quantitative MRI in Articular Cartilage

被引:7
|
作者
Mirmojarabian, Sayed Amir [1 ]
Kajabi, Abdul Wahed [1 ]
Ketola, Juuso H. J. [1 ]
Nykanen, Olli [2 ]
Liimatainen, Timo [1 ,3 ]
Nieminen, Miika T. [1 ,3 ,4 ,5 ]
Nissi, Mikko J. [1 ,2 ]
Casula, Victor [1 ,4 ,5 ]
机构
[1] Univ Oulu, Res Unit Med Imaging Phys & Technol, Oulu, Finland
[2] Univ Eastern Finland, Dept Appl Phys, Kuopio, Finland
[3] Oulu Univ Hosp, Dept Diagnost Radiol, Oulu, Finland
[4] Univ Oulu, Med Res Ctr, Oulu, Finland
[5] Oulu Univ Hosp, Oulu, Finland
基金
芬兰科学院;
关键词
quantitative MRI; proteoglycan content; collagen fiber angle; machine learning regression; nested cross-validation; articular cartilage; T-2; RELAXATION; OSTEOARTHRITIS; DEGENERATION; T-1-RHO; T-2-RHO;
D O I
10.1002/jmri.28353
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Machine learning models trained with multiparametric quantitative MRIs (qMRIs) have the potential to provide valuable information about the structural composition of articular cartilage. Purpose To study the performance and feasibility of machine learning models combined with qMRIs for noninvasive assessment of collagen fiber orientation and proteoglycan content. Study Type Retrospective, animal model. Animal Model An open-source single slice MRI dataset obtained from 20 samples of 10 Shetland ponies (seven with surgically induced cartilage lesions followed by treatment and three healthy controls) yielded to 1600 data points, including 10% for test and 90% for train validation. Field Strength/Sequence A 9.4 T MRI scanner/qMRI sequences: T-1, T-2, adiabatic T-1 rho and T-2 rho, continuous-wave T-1 rho and relaxation along a fictitious field (T-RAFF) maps. Assessment Five machine learning regression models were developed: random forest (RF), support vector regression (SVR), gradient boosting (GB), multilayer perceptron (MLP), and Gaussian process regression (GPR). A nested cross-validation was used for performance evaluation. For reference, proteoglycan content and collagen fiber orientation were determined by quantitative histology from digital densitometry (DD) and polarized light microscopy (PLM), respectively. Statistical Tests Normality was tested using Shapiro-Wilk test, and association between predicted and measured values was evaluated using Spearman's Rho test. A P-value of 0.05 was considered as the limit of statistical significance. Results Four out of the five models (RF, GB, MLP, and GPR) yielded high accuracy (R-2 = 0.68-0.75 for PLM and 0.62-0.66 for DD), and strong significant correlations between the reference measurements and predicted cartilage matrix properties (Spearman's Rho = 0.72-0.88 for PLM and 0.61-0.83 for DD). GPR algorithm had the highest accuracy (R-2 = 0.75 and 0.66) and lowest prediction-error (root mean squared [RMSE] = 1.34 and 2.55) for PLM and DD, respectively. Data Conclusion Multiparametric qMRIs in combination with regression models can determine cartilage compositional and structural features, with higher accuracy for collagen fiber orientation than proteoglycan content. Evidence Level 2 Technical Efficacy Stage 2
引用
收藏
页码:1056 / 1068
页数:13
相关论文
共 50 条
  • [1] Editorial for "Machine Learning Prediction of Collagen Fiber Orientation and Proteoglycan Content From Multiparametric Quantitative MRI in Articular Cartilage"
    Juras, Vladimir
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (04) : 1069 - 1070
  • [2] Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm
    Wilson, W.
    Driessen, N. J. B.
    van Donkelaar, C. C.
    Ito, K.
    OSTEOARTHRITIS AND CARTILAGE, 2006, 14 (11) : 1196 - 1202
  • [3] Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage
    Nissi, MJ
    Töyräs, J
    Laasanen, MS
    Rieppo, J
    Saarakkala, S
    Lappalainen, R
    Jurvelin, JS
    Nieminen, MT
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2004, 22 (03) : 557 - 564
  • [4] Machine learning-augmented and microspectroscopy-informed multiparametric MRI for the non-invasive prediction of articular cartilage composition
    Linka, K.
    Thuering, J.
    Rieppo, L.
    Aydin, R. C.
    Cyron, C. J.
    Kuhl, C.
    Merhof, D.
    Truhn, D.
    Nebelung, S.
    OSTEOARTHRITIS AND CARTILAGE, 2021, 29 (04) : 592 - 602
  • [5] MRI heterogeneity of articular cartilage in strong magnetic fields: Dependence on proteoglycan content
    Othman, SF
    Williams, JM
    Sumner, DR
    Magin, RL
    CONCEPTS IN MAGNETIC RESONANCE PART B-MAGNETIC RESONANCE ENGINEERING, 2004, 23B (01) : 33 - 43
  • [6] Orientation anisotropy of quantitative MRI parameters in degenerated human articular cartilage
    Hanninen, Nina Elina
    Nykanen, Olli
    Prakash, Mithilesh
    Hanni, Matti
    Nieminen, Miika Tapio
    Nissi, Mikko Johannes
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2021, 39 (04) : 861 - 870
  • [7] Effect of collagen cross-linking on quantitative MRI parameters of articular cartilage
    Rautiainen, J.
    Nieminen, M. T.
    Salo, E. -N.
    Kokkonen, H. T.
    Mangia, S.
    Michaeli, S.
    Grohn, O.
    Jurvelin, J. S.
    Toyras, J.
    Nissi, M. J.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 (09) : 1656 - 1664
  • [8] Multiparametric MRI assessment of human articular cartilage degeneration: Correlation with quantitative histology and mechanical properties
    Rautiainen, Jari
    Nissi, Mikko J.
    Salo, Elli-Noora
    Tiitu, Virpi
    Finnila, Mikko A. J.
    Aho, Olli-Matti
    Saarakkala, Simo
    Lehenkari, Petri
    Ellermann, Jutta
    Nieminen, Miika T.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 74 (01) : 249 - 259
  • [9] Fourier Transform Infrared Spectroscopic Imaging and Multivariate Regression for Prediction of Proteoglycan Content of Articular Cartilage
    Rieppo, Lassi
    Rieppo, Jarno
    Jurvelin, Jukka S.
    Saarakkala, Simo
    PLOS ONE, 2012, 7 (02):
  • [10] Integrative Machine Learning Prediction of Prostate Biopsy Results From Negative Multiparametric MRI
    Zheng, Haoxin
    Miao, Qi
    Liu, Yongkai
    Raman, Steven S.
    Scalzo, Fabien
    Sung, Kyunghyun
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 55 (01) : 100 - 110