Well-posedness of a nonlinear Hilfer fractional derivative model for the Antarctic circumpolar current

被引:1
|
作者
Srivastava, H. M. [1 ,2 ,3 ,4 ,5 ,6 ]
Dhawan, Kanika [7 ]
Vats, Ramesh Kumar [8 ]
Nain, Ankit Kumar [8 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[4] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[5] Chung Yuan Christian Univ, Dept Appl Math, Taoyuan City 320314, Taiwan
[6] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[7] Shoolini Univ, Yogananda Sch AI Comp & Data Sci, Solan 173229, Himachal Prades, India
[8] Natl Inst Technol, Dept Math & Sci Comp, Hamirpur 177005, Himachal Prades, India
来源
关键词
Operators of fractional calculus; Hilfer fractional derivative; Fractional differential equations (FDEs); Antarctic circumpolar current (ACC); Ulam-Hyers (UH) stability; Existence and uniqueness; EXISTENCE; UNIQUENESS; OPERATORS; EQUATIONS; CALCULUS; FLOW;
D O I
10.1007/s00033-024-02192-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article explores the Hilfer fractional derivative within the context of fractional differential equations and investigates a mathematical model formulated as a three-point boundary value problem (BVP). The primary focus is on the application of these models to analyze the jet flow of the Antarctic Circumpolar Current. The study establishes the existence of stream functions using Schaefer's fixed point theorem under the assumption of the continuity of the vorticity function phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}. Furthermore, the article delves into the existence and uniqueness results of the stream functions by employing the Banach fixed point theorem. This analysis is conducted under the condition that the vorticity function phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} is Lipschitz continuous with respect to the stream function. Additionally, the stability of the stream functions of the BVP is explored through Ulam-Hyers and generalized Ulam-Hyers stability analyses. In contrast to the foundational results presented for the three-point BVP, the article includes illustrative examples aimed at validating the findings.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Well-posedness of a nonlinear Hilfer fractional derivative model for the Antarctic circumpolar current
    H. M. Srivastava
    Kanika Dhawan
    Ramesh Kumar Vats
    Ankit Kumar Nain
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2024, 75
  • [2] Well-Posedness and Stability for a Differential Problem with Hilfer-Hadamard Fractional Derivative
    Kassim, M. D.
    Tatar, N. -E.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [3] Well-posedness of equations with fractional derivative
    Bu, Shang Quan
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (07) : 1223 - 1232
  • [4] Well-Posedness of Equations with Fractional Derivative
    Shang Quan BU Department of Mathematical Science
    [J]. Acta Mathematica Sinica,English Series, 2010, 26 (07) : 1223 - 1232
  • [5] Well-posedness of equations with fractional derivative
    Shang Quan Bu
    [J]. Acta Mathematica Sinica, English Series, 2010, 26 : 1223 - 1232
  • [6] Mild well-posedness of equations with fractional derivative
    Bu, Shangquan
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (2-3) : 202 - 209
  • [7] The well-posedness for fractional nonlinear Schrodinger equations
    Peng, Li
    Zhou, Yong
    Ahmad, Bashir
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (07) : 1998 - 2005
  • [8] On a nonlinear model for the Antarctic Circumpolar Current
    Yang, Yanjuan
    Wei, Xingyu
    Xie, Nana
    [J]. APPLICABLE ANALYSIS, 2021, 100 (13) : 2891 - 2899
  • [9] GLOBAL WELL-POSEDNESS ON THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Wu, Yifei
    [J]. ANALYSIS & PDE, 2015, 8 (05): : 1101 - 1112
  • [10] ON THE WELL-POSEDNESS PROBLEM FOR THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Killip, Rowan
    Ntekoume, Maria
    Visan, Monica
    [J]. ANALYSIS & PDE, 2023, 16 (05): : 1245 - 1270