Effect of Trichinella spiralis-Derived Antigens on Nonalcoholic Fatty Liver Disease Induced by High-Fat Diet in Mice

被引:2
|
作者
Yang, Yong [1 ,2 ,3 ]
He, Yanzhao [1 ]
Yang, Xiaodan [1 ]
Qiao, Yuyu [1 ]
Yi, Gaoqin [1 ]
Fan, Weiping [1 ,2 ,3 ]
Liu, Hongli [1 ,2 ,3 ]
Tong, Mingwei [1 ,2 ,3 ]
机构
[1] Shanxi Med Univ, Sch Basic Med Sci, Jinzhong 030619, Peoples R China
[2] Shanxi Med Univ, Key Lab Cellular Physiol, Minist Educ, Taiyuan 030001, Peoples R China
[3] Shanxi Med Univ, Shanxi Key Lab Cellular Physiol, Taiyuan 030001, Peoples R China
基金
中国国家自然科学基金;
关键词
nonalcoholic fattyliver disease; Trichinella spiralis-derived antigens; gut-liver axis; oxidative stress; inflammation; GUT MICROBIOTA; INSULIN SENSITIVITY; HELMINTH INFECTION; OXIDATIVE STRESS; STEATOHEPATITIS; OBESITY; LACHNOSPIRACEAE; INSIGHTS; PHASE; NAFLD;
D O I
10.1021/acsptsci.3c00276
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Nonalcoholic fatty liver disease (NAFLD) is a liver disease characterized by hepatic steatosis, inflammation, and fibrosis, as well as gut dysbiosis. No approved effective therapeutic medicine is available to date for NAFLD. Helminth therapy is believed to be a novel direction and therapeutic strategy for NAFLD. Our previous study showed that Trichinella spiralis-derived antigens (TsAg) had the potential for partially alleviating obesity via regulating gut microbiota. However, the effect of TsAg on NAFLD remains unclear. In this study, high-fat diet (HFD)-induced model mice were treated with TsAg and microbiota transplantation experiments, and alterations in the pathogenesis of nonalcoholic liver disease were assessed. The results showed that TsAg markedly reduced hepatic steatosis, improved insulin resistance, and regulated the abnormal expression of hepatic lipid-related genes. Of note, TsAg ameliorated hepatic inflammation by decreasing pro-inflammatory TNF-alpha and IL-1 beta, suppressing hepatic macrophage infiltration, as well as promoting M2 macrophage polarization. Moreover, TsAg reversed gut dysbiosis, as especially indicated by an increase in beneficial bacteria (e.g., Akkermansiaceae and Rikenellaceae). Furthermore, our study found that TsAg reduced LPS hepatic translocation and hepatic TLR4/NF-kappa B signaling, which further contributed to inhibiting hepatic inflammation. In addition, TsAg inhibited hepatic oxidative stress involving Nrf2/NQO-1 signaling. Microbiota transplantation showed that TsAg-altered microbiota is sufficient to confer protection against NAFLD in HFD-induced mice. Overall, these findings suggest that TsAg involving gut-liver axis and Nrf2/NQO-1 signaling is a novel promising candidate for NAFLD treatment. TsAg restores intestinal microbiota and intestinal barrier to inhibit bacteria and LPS translocation into the liver, contributing to reduce inflammation, oxidative stress, and hepatic steatosis in the liver of NAFLD mice. The effects were attributed to, at least in part, the inactivation of NF-kappa B pathway and the activation of Nrf-2/NQO-1 pathway. This study provides new insights for understanding immune modulation by T. spiralis-derived products as well as the potential application of TsAg as a modality for NAFLD.
引用
收藏
页码:432 / 444
页数:13
相关论文
共 50 条
  • [1] The Trichinella spiralis-derived antigens alleviate HFD-induced obesity and inflammation in mice
    Tong, Mingwei
    Yang, Xiaodan
    Liu, Haixia
    Ge, Huihui
    Huang, Guangrong
    Kang, Xing
    Yang, Hao
    Liu, Qingqing
    Ren, Peng
    Kuang, Xiaoyu
    Yan, Huan
    Shen, Xiaorong
    Qiao, Yuyu
    Kang, Yongbo
    Li, Lin
    Yang, Yong
    Fan, Weiping
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 117
  • [2] Perforin attenuates nonalcoholic fatty liver disease in high-fat diet-induced mice
    Li, D.
    Wang, Q.
    Zhu, J.
    Zhang, M.
    Yang, H.
    Yin, Z.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2019, 49 : 1312 - 1312
  • [3] Paeonillorin Protects against Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet in Mice
    Zhang, Lijing
    Yang, Bin
    Yu, Baoping
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2015, 38 (07) : 1005 - 1011
  • [4] Effects of calycosin against high-fat diet-induced nonalcoholic fatty liver disease in mice
    Duan, Xingping
    Meng, Qiang
    Wang, Changyuan
    Liu, Zhihao
    Sun, Huijun
    Huo, Xiaokui
    Sun, Pengyuan
    Ma, Xiaodong
    Peng, Jinyong
    Liu, Kexin
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2018, 33 (02) : 533 - 542
  • [5] Coprococcus protects against high-fat diet-induced nonalcoholic fatty liver disease in mice
    Lu, Kaikai
    Zhou, Yimeng
    He, Lei
    Li, Ya
    Shahzad, Muhammad
    Li, Dongmin
    JOURNAL OF APPLIED MICROBIOLOGY, 2024, 135 (06)
  • [6] The protective effects of trelagliptin on high-fat diet-induced nonalcoholic fatty liver disease in mice
    Wang, Guang
    Wu, Bing
    Zhang, Lening
    Jin, Xuefei
    Wang, Kun
    Xu, Wenzhou
    Zhang, Bo
    Wang, Heyuan
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2021, 35 (04)
  • [7] Dysfunction of autophagy in high-fat diet-induced nonalcoholic fatty liver disease
    Ren, Qiannan
    Sun, Qiming
    Fu, Junfen
    AUTOPHAGY, 2024, 20 (02) : 221 - 241
  • [8] Chromium attenuates high-fat diet-induced nonalcoholic fatty liver disease in KK/HlJ mice
    Chen, Wen-Ying
    Chen, Chun-Jung
    Liu, Chia-Hsin
    Mao, Frank Chiahung
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 397 (03) : 459 - 464
  • [9] Loss of EGFR contributes to high-fat diet-induced nonalcoholic fatty liver disease
    Shao, Fang
    Deng, Hao
    Zhang, Wei
    Ren, Zhengrong
    Kang, Zhiqian
    Ding, Zhi
    Zhang, Junfeng
    Zang, Yuhui
    FEBS LETTERS, 2023, 597 (11) : 1503 - 1516
  • [10] Chiglitazar attenuates high-fat diet-induced nonalcoholic fatty liver disease by modulating multiple pathways in mice
    Liu, Lijuan
    Sun, Weiming
    Tang, Xulei
    Zhen, Donghu
    Guan, Conghui
    Fu, Songbo
    Liu, Jinjin
    MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2024, 593