Multifunctional ADM hydrogel containing endothelial cell-exosomes for diabetic wound healing

被引:8
|
作者
Xiang, Kaituo [1 ,2 ,3 ,4 ]
Chen, Jing [5 ,6 ]
Guo, Jiahe [1 ]
Li, Gongchi [1 ]
Kang, Yu [1 ]
Wang, Cheng [1 ]
Jiang, Tao [1 ]
Zhang, Maojie [1 ]
Jiang, Guoyong [1 ]
Yuan, Meng [1 ]
Xiang, Xuejiao [1 ]
Xu, Yingpeng [1 ]
Ren, Sen [7 ]
Xiong, Hewei [8 ]
Xu, Xiang [1 ]
Li, Wenqing [9 ]
Yang, Xiaofan [1 ]
Chen, Zhenbing [1 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Hand Surg, Wuhan 430022, Peoples R China
[2] Wenzhou Med Univ, Affiliated Hosp 2, Dept Orthopaed, Wenzhou 325027, Peoples R China
[3] Wenzhou Med Univ, Yuying Childrens Hosp, Wenzhou 325027, Peoples R China
[4] Wenzhou Med Univ, Clin Med Coll 2, Wenzhou 325027, Peoples R China
[5] Wuhan 1 Hosp, Dept Dermatol, Wuhan 430000, Hubei, Peoples R China
[6] Wuhan 1 Hosp, Hubei Prov & Key Lab Skin Infect & Immun, Wuhan 430022, Hubei, Peoples R China
[7] Wuhan Univ, Dept Neurosurg, Zhongnan Hosp, Wuhan 430071, Peoples R China
[8] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Emergency Surg, Wuhan 430022, Peoples R China
[9] Huazhong Univ Sci & Technol, Union Shenzhen Hosp, Dept Hand & Foot Surg, Shenzhen 518052, Peoples R China
基金
中国国家自然科学基金;
关键词
Diabetic wound healing; Acellular dermal matrix; Exosomes; Hydrogel; ACELLULAR DERMAL MATRIX;
D O I
10.1016/j.mtbio.2023.100863
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Non-healing wound, with limited treatment options, remains a prevalent complication of diabetes mellitus. The underlying causes wherein include oxidative stress injury, bacterial infection, cellular dysfunction, and persistent inflammation. Acellular Dermal Matrix (ADM), a wound dressing composed of natural extracellular matrix and abundant bioactive factors, has been successfully developed to treat various wounds, including burns and diabetic ulcers. Protocatechualdehyde (PA) & trivalent iron ion (Fe3+) complex (Fe3+@PA) exhibits potential antioxidant and antibacterial properties. In this study, we developed a dual hydrogel network by combining Fe3+@PA complex-modified ADM with light-cured gelatin (GelMA), supplemented with exosomes derived from human umbilical vein endothelial cells (HUVEC-Exos), to create an ADM composite hydrogel system (ADM-Fe3+@PA-Exos/GelMA) with antioxidant, antibacterial, and cell-promoting functions for diabetic wound treat-ment. Through in vitro experiments, we investigated the biosafety, antioxidant and antibacterial properties of ADM composite hydrogel. Furthermore, we examined the protective effects of ADM composite hydrogel on diabetic wound. The above experiments collectively demonstrate that our ADM-Fe3+@PA-Exos/GelMA hydrogel promotes diabetic wound healing by eliminating bacterial infection, reduced the reactive oxygen species (ROS) levels, protecting cells against oxidative stress damage, promotingcollagen deposition and angiogenesis, which provides a promising strategy to optimize ADM for diabetic wound treatment.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A multifunctional antibacterial and self-healing hydrogel laden with bone marrow mesenchymal stem cell-derived exosomes for accelerating diabetic wound healing
    Geng, Xinrong
    Qi, Yao
    Liu, Xintong
    Shi, Yijie
    Li, Hongdan
    Zhao, Liang
    [J]. BIOMATERIALS ADVANCES, 2022, 133
  • [2] 3D-exosomes laden multifunctional hydrogel enhances diabetic wound healing via accelerated angiogenesis
    Peng, Han
    Li, Huichen
    Zhang, Xi
    Tang, Jiezhang
    Liang, Yongping
    Qiao, Lipeng
    Zhu, Yun
    Hou, Mengmeng
    Wei, Siming
    Zhang, Zhaoxiang
    Liu, Chaohua
    Li, Xinmao
    Liang, Baoyan
    Song, Baoqiang
    Guo, Baolin
    Zhang, Jie
    [J]. CHEMICAL ENGINEERING JOURNAL, 2023, 475
  • [3] Multifunctional Injectable Hydrogel Loaded with Cerium-Containing Bioactive Glass Nanoparticles for Diabetic Wound Healing
    Chen, Yue-Hua
    Rao, Zhou-Feng
    Liu, Yu-Jie
    Liu, Xiang-Sheng
    Liu, Yu-Fei
    Xu, Lan-Ju
    Wang, Ze-Qi
    Guo, Jing-Yue
    Zhang, Lin
    Dong, Yun-Sheng
    Qi, Chun-Xiao
    Yang, Chao
    Wang, Shu-Fang
    [J]. BIOMOLECULES, 2021, 11 (05)
  • [4] Naturally derived dual dynamic crosslinked multifunctional hydrogel for diabetic wound healing
    Shi, Tongtong
    Lu, Hanzhi
    Zhu, Jianyong
    Zhou, Xiaojun
    He, Chuanglong
    Li, Fulun
    Yang, Guang
    [J]. COMPOSITES PART B-ENGINEERING, 2023, 257
  • [5] Multifunctional hydrogel combined with electrical stimulation therapy for promoting diabetic wound healing
    Zheng, Xiaoyan
    Yao, Jiaxin
    Yao, Jialing
    Wang, Pan
    Liu, Wan
    Fan, Daidi
    Hui, Junfeng
    [J]. NANO RESEARCH, 2024,
  • [6] A multifunctional supramolecular hydrogel for infected wound healing
    Ding, Tingting
    Qi, Jiajia
    Zou, Jingcheng
    Dan, Hongxia
    Zhao, Hang
    Chen, Qianming
    [J]. BIOMATERIALS SCIENCE, 2022, 10 (02) : 381 - 395
  • [7] Multifunctional self-healing peptide hydrogel for wound healing
    Jin, Jiman
    Sun, Chuchu
    Xu, Keyuan
    Sun, Xiaoliang
    Cao, Lingling
    Liu, Liangle
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 261
  • [8] Photopolymerized Multifunctional Hydrogel Loaded with Asiaticoside and Growth Factor for Accelerating Diabetic Wound Healing
    Wang, Zhen
    Zhao, Fangzheng
    Deng, Junxia
    Song, Huijuan
    Ma, Feifei
    Chen, Ligong
    Wang, Weiwei
    Xing, Jinfeng
    [J]. ACS APPLIED POLYMER MATERIALS, 2024, 6 (07) : 4267 - 4281
  • [9] Bioactive self-healing umbilical cord blood exosomes hydrogel for promoting chronic diabetic wound healing
    Liu, Kexin
    Gong, Benxin
    Li, Tao
    Lei, Huafeng
    Li, Jiahua
    Tang, Jingyun
    Peng, Yanrong
    Li, Shengnian
    Zheng, Ying
    Wei, Guangzhou
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 690
  • [10] A cannabidiol-containing alginate based hydrogel as novel multifunctional wound dressing for promoting wound healing
    Zheng, Zhe
    Qi, Jianchao
    Hu, Liqiu
    Ouyang, Dongfang
    Wang, Huizhen
    Sun, Qili
    Lin, Lijun
    You, Lidan
    Tang, Bin
    [J]. BIOMATERIALS ADVANCES, 2022, 134