Spectral decimation of piecewise centrosymmetric Jacobi operators on graphs

被引:1
|
作者
Mograby, Gamal [1 ]
Balu, Radhakrishnan [2 ,3 ]
Okoudjou, Kasso A. [4 ]
Teplyaev, Alexander [5 ]
机构
[1] Univ Cincinnati, Dept Math Sci, 4199 French Hall West, Cincinnati, OH 45221 USA
[2] Univ Maryland, Dept Math, William E Kirwan Hall,4176 Campus Dr, College Pk, MD 20742 USA
[3] Univ Maryland, Norbert Wiener Ctr Harmon Anal & Applicat, William E Kirwan Hall,4176 Campus Dr, College Pk, MD 20742 USA
[4] Tufts Univ, Dept Math, 177 Coll Ave, Medford, MA 02155 USA
[5] Univ Connecticut, Dept Math, Henry Ruthven Monteith Bldg,341 Mansfield Rd, Storrs, CT 06269 USA
关键词
Spectral analysis; Jacobi operators; graphs; spectral decimation; renormalization group method; self-similar fractal lattice; ORTHOGONAL POLYNOMIALS; SIERPINSKI GASKET; RESOLVENT KERNEL; COMPLEX DYNAMICS; FRACTALS; ASYMPTOTICS; MATRICES; EQUATION; EIGENVALUES; LAPLACIAN;
D O I
10.4171/JST/473
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the spectral theory of a class of piecewise centrosymmetric Jacobi operators defined on an associated family of substitution graphs. Given a finite centrosymmetric matrix viewed as a weight matrix on a finite directed path graph and a probabilistic Laplacian viewed as a weight matrix on a locally finite strongly connected graph, we construct a new graph and a new operator by edge substitution. Our main result proves that the spectral theory of the piecewise centrosymmetric Jacobi operator can be explicitly related to the spectral theory of the probabilistic Laplacian using certain orthogonal polynomials. Our main tools involve the so-called spectral decimation, known from the analysis on fractals, and the classical Schur complement. We include several examples of self-similar Jacobi matrices that fit into our framework.
引用
收藏
页码:903 / 935
页数:33
相关论文
共 50 条
  • [1] COMB GRAPHS AND SPECTRAL DECIMATION
    Jordan, Jonathan
    GLASGOW MATHEMATICAL JOURNAL, 2009, 51 : 71 - 81
  • [2] Spectral deformations of Jacobi operators
    Teschl, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 491 : 1 - 15
  • [3] THE SPECTRA OF THE LAPLACIANS OF FRACTAL GRAPHS NOT SATISFYING SPECTRAL DECIMATION
    Jordan, Jonathan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 731 - 746
  • [4] Spectral projection method for Jacobi operators
    Boulton, L
    REVISTA MEXICANA DE FISICA, 2003, 49 : 111 - 113
  • [5] Spectral Approximation for Quasiperiodic Jacobi Operators
    Charles Puelz
    Mark Embree
    Jake Fillman
    Integral Equations and Operator Theory, 2015, 82 : 533 - 554
  • [6] Spectral Approximation for Quasiperiodic Jacobi Operators
    Puelz, Charles
    Embree, Mark
    Fillman, Jake
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (04) : 533 - 554
  • [7] SPECTRAL MEASURES OF JACOBI OPERATORS WITH RANDOM POTENTIALS
    del Rio, Rafael
    Silva, Luis O.
    OPERATORS AND MATRICES, 2011, 5 (03): : 435 - 448
  • [8] Spectral type of a class of random Jacobi operators
    Fu, Zhengqi
    Li, Xiong
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (11)
  • [9] Spectral Analysis for Adjacency Operators on Graphs
    Marius Măntoiu
    Serge Richard
    Rafael Tiedra de Aldecoa
    Annales Henri Poincaré, 2007, 8 : 1401 - 1423
  • [10] Spectral determinant of Schrodinger operators on graphs
    Desbois, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (07): : L63 - L67