Mg-doped, carbon-coated, and prelithiated SiOx as anode materials with improved initial Coulombic efficiency for lithium-ion batteries

被引:12
|
作者
Liu, Bin [1 ,2 ]
Liu, Jie [1 ,2 ]
Zhong, Cheng [1 ,2 ,3 ,4 ,5 ,6 ]
Hu, Wenbin [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Key Lab Adv Ceram & Machining Technol, Minist Educ, Tianjin, Peoples R China
[2] Tianjin Univ, Sch Mat Sci & Engn, Tianjin Key Lab Composite & Funct Mat, Tianjin, Peoples R China
[3] Natl Univ Singapore, Joint Sch, Tianjin, Peoples R China
[4] Tianjin Univ, Tianjin, Peoples R China
[5] Int Campus Tianjin Univ, Tianjin Univ, Fuzhou, Peoples R China
[6] Tianjin Univ, Sch Mat Sci & Engn, Key Lab Adv Ceram & Machining Technol, Minist Educ, Tianjin 300072, Peoples R China
关键词
initial Coulombic efficiency; lithium-ion batteries; magnesium doping; prelithiation; silicon suboxide; ELECTROCHEMICAL PROPERTIES; COMPOSITE;
D O I
10.1002/cey2.421
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon suboxide (SiOx, x approximate to 1) is promising in serving as an anode material for lithium-ion batteries with high capacity, but it has a low initial Coulombic efficiency (ICE) due to the irreversible formation of lithium silicates during the first cycle. In this work, we modify SiOx by solid-phase Mg doping reaction using low-cost Mg powder as a reducing agent. We show that Mg reduces SiO2 in SiOx to Si and forms MgSiO3 or Mg2SiO4. The MgSiO3 or Mg2SiO4 are mainly distributed on the surface of SiOx, which suppresses the irreversible lithium-ion loss and enhances the ICE of SiOx. However, the formation of MgSiO3 or Mg2SiO4 also sacrifices the capacity of SiOx. Therefore, by controlling the reaction process between Mg and SiOx, we can tune the phase composition, proportion, and morphology of the Mg-doped SiOx and manipulate the performance. We obtain samples with a capacity of 1226 mAh g(-1) and an ICE of 84.12%, which show significant improvement over carbon-coated SiOx without Mg doping. By the synergistical modification of both Mg doping and prelithiation, the capacity of SiOx is further increased to 1477 mAh g(-1) with a minimal compromise in the ICE (83.77%).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] MgSiO3 doped, carbon-coated SiOx anode with enhanced initial coulombic efficiency for lithium-ion battery
    Song, Runfeng
    Yang, Lili
    Luan, Jingyi
    Yuan, Hongyan
    Ji, Shi
    Wan, Dengyuan
    Liu, Jie
    Hu, Wenbin
    Zhong, Cheng
    Journal of Energy Storage, 2025, 105
  • [2] Self-sacrificed Synthesis of Amorphous Carbon-Coated SiOx as Anode Materials for Lithium-Ion Batteries
    Cui, Hao
    Chen, Kai
    Shen, Yafei
    Wang, Zhao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (06): : 5474 - 5487
  • [3] On the Relationship Between the Porosity and Initial Coulombic Efficiency of Porous Carbon Materials for the Anode in Lithium-Ion Batteries
    Majid Shaker
    Ali Asghar Sadeghi Ghazvini
    Reza Riahifar
    Asim Mumtaz
    Electronic Materials Letters, 2022, 18 : 400 - 406
  • [4] On the Relationship Between the Porosity and Initial Coulombic Efficiency of Porous Carbon Materials for the Anode in Lithium-Ion Batteries
    Shaker, Majid
    Sadeghi Ghazvini, Ali Asghar
    Riahifar, Reza
    Mumtaz, Asim
    ELECTRONIC MATERIALS LETTERS, 2022, 18 (04) : 400 - 406
  • [5] Fundamental Understanding of the Low Initial Coulombic Efficiency in SiOx Anode for Lithium-Ion Batteries: Mechanisms and Solutions
    Wu, Junxiu
    Dong, Qianwen
    Zhang, Qian
    Xu, Yunkai
    Zeng, Xuemei
    Yuan, Yifei
    Lu, Jun
    ADVANCED MATERIALS, 2024, 36 (33)
  • [6] Carbon-coated nitrogen doped SiOx anode material for high stability lithium ion batteries
    Jin, Chenxin
    Dan, Jianglei
    Zou, Yue
    Xu, Guojun
    Yue, Zhihao
    Li, Xiaomin
    Sun, Fugen
    Zhou, Lang
    Wang, Li
    CERAMICS INTERNATIONAL, 2021, 47 (20) : 29443 - 29450
  • [7] Carbon-coated ZnO Nanocomposite Microspheres as Anode Materials for Lithium-ion Batteries
    Yingqiang Fan
    Xiujuan Chen
    Dan Xu
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2023, 38 : 490 - 495
  • [8] Carbon-coated disproportionated SiO composite as anode materials for lithium-ion batteries
    Wang, Changlong
    Feng, Xingyi
    Chen, Ronghua
    Chen, Zhonghua
    Chen, Shengzhou
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2024, 54 (05) : 951 - 962
  • [9] Carbon-coated ZnO Nanocomposite Microspheres as Anode Materials for Lithium-ion Batteries
    范影强
    陈秀娟
    XU Dan
    Journal of Wuhan University of Technology(Materials Science), 2023, 38 (03) : 490 - 495
  • [10] Carbon-coated disproportionated SiO composite as anode materials for lithium-ion batteries
    Changlong Wang
    Xingyi Feng
    Ronghua Chen
    Zhonghua Chen
    Shengzhou Chen
    Journal of Applied Electrochemistry, 2024, 54 : 951 - 962