Phosphate Binding in PNP Alters Transition-State Analogue Affinity and Subunit Cooperativity

被引:0
|
作者
Minnow, Yacoba V. T. [1 ]
Schramm, Vern L. [1 ]
Almo, Steven C. [1 ]
Ghosh, Agnidipta [1 ]
机构
[1] Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA
关键词
PURINE NUCLEOSIDE PHOSPHORYLASE; CATALYTIC SITE; IMMUCILLIN-H; CALF SPLEEN; INHIBITORS; ACID;
D O I
10.1021/acs.biochem.3c00264
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Purine nucleoside phosphorylases (PNPs) catalyze the phosphorolysis of 6-oxypurine nucleosides with an HPO42- dianion nucleophile. Nucleosides and phosphate occupy distinct pockets in the PNP active site. Evaluation of the HPO42- site by mutagenesis, cooperative binding studies, and thermodynamic and structural analysis demonstrate that alterations in the HPO42- binding site can render PNP inactive and significantly impact subunit cooperativity and binding to transition-state analogue inhibitors. Cooperative interactions between the cationic transition-state analogue and the anionic HPO42- nucleophile demonstrate the importance of reforming the transition-state ensemble for optimal inhibition with transition-state analogues. Altered phosphate binding in the catalytic site mutants helps to explain one of the known lethal PNP deficiency syndromes in humans.
引用
收藏
页码:3116 / 3125
页数:10
相关论文
共 50 条
  • [1] Phosphate binding in PNP alters transition state analog affinity and subunit cooperation
    Ghosh, Agnidipta
    Minnow, Yacoba V. T.
    Schramm, Vern
    Almo, Steve
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (03) : S345 - S345
  • [2] Decreased Transition-State Analogue Affinity in Isotopically Heavy MTAN with Increased Catalysis
    Brown, Morais
    Schramm, Vern L.
    BIOCHEMISTRY, 2023, 62 (20) : 2928 - 2933
  • [3] Cholesterol esterase activity by in vitro selection of RNA against a phosphate transition-state analogue
    Chun, SM
    Jeong, SJ
    Kim, JM
    Chong, BO
    Park, YK
    Park, H
    Yu, J
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (46) : 10844 - 10845
  • [4] Structure of astacin with a transition-state analogue inhibitor
    Grams, F
    Dive, V
    Yiotakis, A
    Yiallouros, I
    Vassiliou, S
    Zwilling, R
    Bode, W
    Stocker, W
    NATURE STRUCTURAL BIOLOGY, 1996, 3 (08): : 671 - 675
  • [5] Synthesis of a 'twisted' transition-state analogue of biotin
    Grant, AS
    Chaudhary, K
    Stewart, L
    Peters, A
    Delisle, S
    Decken, A
    TETRAHEDRON LETTERS, 2004, 45 (08) : 1777 - 1780
  • [6] Phage display of a catalytic antibody to optimize affinity for transition-state analog binding
    Baca, M
    Scanlan, TS
    Stephenson, RC
    Wells, JA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (19) : 10063 - 10068
  • [7] Determination of the affinity of each component of a composite quaternary transition-state analogue complex of creatine kinase
    Borders, CL
    Snider, MJ
    Wolfenden, R
    Edmiston, PL
    BIOCHEMISTRY, 2002, 41 (22) : 6995 - 7000
  • [8] Affinity of (α-P-borano)-NDPs to a transition-state analogue complex of rabbit muscle pyruvate kinase
    Dobrikov, MI
    Li, P
    Shaw, BR
    ANTIVIRAL RESEARCH, 2005, 65 (03) : A90 - A90
  • [9] Atomic dissection of the hydrogen bond network for transition-state analogue binding to purine nucleoside phosphorylase
    Kicska, GA
    Tyler, PC
    Evans, GB
    Furneaux, RH
    Shi, WX
    Fedorov, A
    Lewandowicz, A
    Cahill, SM
    Almo, SC
    Schramm, VL
    BIOCHEMISTRY, 2002, 41 (49) : 14489 - 14498
  • [10] Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5′-Methylthioadenosine Phosphorylase
    Firestone, Ross S.
    Cameron, Scott A.
    Karp, Jerome M.
    Arcus, Vickery L.
    Schramm, Vern L.
    ACS CHEMICAL BIOLOGY, 2017, 12 (02) : 464 - 473