Porous Carbon Materials Based on Blue Shark Waste for Application in High-Performance Energy Storage Devices

被引:2
|
作者
Brandao, Ana T. S. C. [1 ]
State, Sabrina [2 ,3 ]
Costa, Renata [1 ]
Enache, Laura-Bianca [2 ]
Potorac, Pavel [2 ]
Vazquez, Jose A. [4 ]
Valcarcel, Jesus [4 ]
Silva, A. Fernando [1 ]
Enachescu, Marius [2 ,5 ]
Pereira, Carlos M. M. [1 ]
机构
[1] Univ Porto, Fac Ciencias, Dept Quim & Bioquim, Inst Ciencias Mol IMS CIQUP, Rua Campo Alegre 687, P-4169007 Porto, Portugal
[2] Univ Politehn Bucuresti, Ctr Surface Sci & Nanotechnol, Splaiul Independentei 313, Bucharest 060042, Romania
[3] Univ Politehn Bucuresti, Fac Med Engn, Gheorghe Polizu St 1-7, Bucharest 011061, Romania
[4] Inst Invest Marinas IIM CSIC, Grp Reciclado & Valorizac Residuos REVAL, Eduardo Cabello 6, Vigo 36208, Spain
[5] Acad Romanian Scientists, Splaiul Independentei 54, Bucharest 050094, Romania
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 15期
基金
瑞典研究理事会; 芬兰科学院;
关键词
marine biomass; chondroitin sulfate; gelatine; bio-carbon; carbonization process; deep eutectic solvents; specific capacitance; ball-milling; ACTIVATED-CARBON; CHEMICAL ACTIVATION; PHOSPHORIC-ACID; SURFACE-AREA; RICE HUSK; BIOMASS; SUPERCAPACITORS; PRETREATMENT; NANOSHEETS; ELECTRODE;
D O I
10.3390/app13158676
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The scientific community's interest in developing sustainable carbon materials from biomass waste is increasing steadily, responding to the need to reduce dependence on fossil fuels. Every day, different biomass sources are suggested for obtaining porous carbon materials with characteristics for application in different areas. Porous carbon materials with a high specific surface area are a subject of interest for application in energy storage devices. This work reports the use of blue shark chondroitin sulfate and gelatine as precursors for developing porous carbon materials for energy storage devices. Commercial chondroitin sulfate was used for comparison. The porous carbons obtained in this study underwent various characterization techniques to assess their properties. A BET surface area analyzer measured the specific surface area and pore size. Additionally, scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), a high resolution-scanning transmission electron microscope (HR-STEM), Raman spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, composition, and structure of the carbons. A modified glassy carbon (GC) electrode was used as the working electrode for the electrochemical characterization. Cyclic voltammetry and galvanostatic charge/discharge techniques were employed with ethaline, an environmentally friendly and sustainable electrolyte based on choline chloride, to assess the electrochemical performance. Furthermore, the most promising samples were subjected to ball-milling to investigate the impact of this process on surface area and capacitance. Blue shark chondroitin sulfate-based carbon presented a specific surface area of 135.2 m(2) g(-1), compared to 76.11 m(2) g(-1) of commercial chondroitin sulfate, both carbonized for 1 h at 1000 & DEG;C. Blue shark gelatine presented a specific surface area of 30.32 m(2) g(-1). The associated specific capacitance of these three samples is 40 F g(-1), 25 F g(-1), and 7 F g(-1). Ball-milling on these samples increased the specific surface area and capacitance of the three studied samples with different optimal milling times. This study presents the novel utilization of carbon materials derived from blue shark (with and without ball-milling) through a one-step carbonization process. These carbon materials were combined with an environmentally friendly DES electrolyte. The aim was to explore their potential application in energy storage devices, representing the first instance of employing blue shark-based carbon materials in this manner.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Design, synthesis and application of high-performance carbon-based energy storage materials
    Wang X.
    Zhao Q.
    Cheng Z.
    Zhang H.
    Hu H.
    Wang L.
    Wu M.
    Huagong Xuebao/CIESC Journal, 2020, 71 (06): : 2660 - 2677
  • [2] Blue fluorescent OLED materials and their application for high-performance devices
    Kuma, Hitoshi
    Hosokawa, Chishio
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2014, 15 (03)
  • [3] Carbon materials for high-performance potassium-ion energy-storage devices
    Lin, Changrong
    Wang, Yijun
    Zhong, Fulan
    Yu, Huiling
    Yan, Yurong
    Wu, Songping
    CHEMICAL ENGINEERING JOURNAL, 2021, 407
  • [4] Carbon-based asymmetric capacitor for high-performance energy storage devices
    Kim, Doyoung
    Lee, Keunsik
    Kim, Meeree
    Kim, Yongshin
    Lee, Hyoyoung
    ELECTROCHIMICA ACTA, 2019, 300 : 461 - 469
  • [5] Data-driven design of carbon-based materials for high-performance flexible energy storage devices
    Wang, Yuxuan
    Sha, Junwei
    Zhu, Shan
    Ma, Liying
    He, Chunnian
    Zhong, Cheng
    Hu, Wenbin
    Zhao, Naiqin
    JOURNAL OF POWER SOURCES, 2023, 556
  • [6] Unleashing the Potential of MXene-Based Flexible Materials for High-Performance Energy Storage Devices
    Zhou, Yunlei
    Yin, Liting
    Xiang, Shuangfei
    Yu, Sheng
    Johnson, Hannah M.
    Wang, Shaolei
    Yin, Junyi
    Zhao, Jie
    Luo, Yang
    Chu, Paul K.
    ADVANCED SCIENCE, 2024, 11 (03)
  • [7] Electrochemical energy storage performance analysis of carbon based porous materials based on high temperature decomposition
    Song, Jialong
    Sun, Mingfen
    2020 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND MATERIALS SCIENCE, 2020, 585
  • [8] Recycling decoration wastes toward a high-performance porous carbon membrane electrode for supercapacitive energy storage devices
    Cui, Mengxia
    Wang, Fang
    Zhang, Zhengguo
    Min, Shixiong
    NEW JOURNAL OF CHEMISTRY, 2021, 46 (01) : 136 - 147
  • [9] Biomass-derived activated carbon for high-performance energy storage devices
    Haider, Rakib
    Sagadevan, Suresh
    Cameron, Neil R.
    Johan, Mohd Rafie
    JOURNAL OF POWER SOURCES, 2025, 633
  • [10] Biomass Feedstock of Waste Mango-Peel-Derived Porous Hard Carbon for Sustainable High-Performance Lithium-Ion Energy Storage Devices
    Muruganantham, Rasu
    Wang, Fu-Ming
    Yuwono, Rio Akbar
    Sabugaa, Michael
    Liu, Wei-Ren
    ENERGY & FUELS, 2021, 35 (13) : 10878 - 10889