A gated graph transformer for protein complex structure quality assessment and its performance in CASP15

被引:6
|
作者
Chen, Xiao [1 ]
Morehead, Alex [1 ]
Liu, Jian [1 ]
Cheng, Jianlin [1 ]
机构
[1] Univ Missouri, Dept Elect Engn & Comp Sci, Columbia, MO 65201 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DOCKING; BENCHMARK; DESIGN;
D O I
10.1093/bioinformatics/btad203
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
MotivationProteins interact to form complexes to carry out essential biological functions. Computational methods such as AlphaFold-multimer have been developed to predict the quaternary structures of protein complexes. An important yet largely unsolved challenge in protein complex structure prediction is to accurately estimate the quality of predicted protein complex structures without any knowledge of the corresponding native structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as protein function analysis and drug discovery.ResultsIn this work, we introduce a new gated neighborhood-modulating graph transformer to predict the quality of 3D protein complex structures. It incorporates node and edge gates within a graph transformer framework to control information flow during graph message passing. We trained, evaluated and tested the method (called DProQA) on newly-curated protein complex datasets before the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) and then blindly tested it in the 2022 CASP15 experiment. The method was ranked 3rd among the single-model quality assessment methods in CASP15 in terms of the ranking loss of TM-score on 36 complex targets. The rigorous internal and external experiments demonstrate that DProQA is effective in ranking protein complex structures.
引用
下载
收藏
页码:i308 / i317
页数:10
相关论文
共 23 条
  • [1] A gated graph transformer for protein complex structure quality assessment and its performance in CASP15
    Chen, Xiao
    Morehead, Alex
    Liu, Jian
    Cheng, Jianlin
    BIOINFORMATICS, 2023, 39 : I308 - I317
  • [2] Tertiary structure assessment at CASP15
    Simpkin, Adam J.
    Mesdaghi, Shahram
    Rodriguez, Filomeno Sanchez
    Elliott, Luc
    Murphy, David L.
    Kryshtafovych, Andriy
    Keegan, Ronan M.
    Rigden, Daniel J.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (12) : 1616 - 1635
  • [3] Assessment of protein-ligand complexes in CASP15
    Robin, Xavier
    Studer, Gabriel
    Durairaj, Janani
    Eberhardt, Jerome
    Schwede, Torsten
    Walters, W. Patrick
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (12) : 1811 - 1821
  • [4] Progress at protein structure prediction, as seen in CASP15
    Elofsson, Arne
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 80
  • [5] Enhancing alphafold-multimer-based protein complex structure prediction with MULTICOM in CASP15
    Jian Liu
    Zhiye Guo
    Tianqi Wu
    Raj S. Roy
    Farhan Quadir
    Chen Chen
    Jianlin Cheng
    Communications Biology, 6
  • [6] Enhancing alphafold-multimer-based protein complex structure prediction with MULTICOM in CASP15
    Liu, Jian
    Guo, Zhiye
    Wu, Tianqi
    Roy, Raj S.
    Quadir, Farhan
    Chen, Chen
    Cheng, Jianlin
    COMMUNICATIONS BIOLOGY, 2023, 6 (01)
  • [7] Assessment of three-dimensional RNA structure prediction in CASP15
    Das, Rhiju
    Kretsch, Rachael C.
    Simpkin, Adam J.
    Mulvaney, Thomas
    Pham, Phillip
    Rangan, Ramya
    Bu, Fan
    Keegan, Ronan M.
    Topf, Maya
    Rigden, Daniel J.
    Miao, Zhichao
    Westhof, Eric
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (12) : 1747 - 1770
  • [8] Protein target highlights in CASP15: Analysis of models by structure providers
    Alexander, Leila T.
    Durairaj, Janani
    Kryshtafovych, Andriy
    Abriata, Luciano A.
    Bayo, Yusupha
    Bhabha, Gira
    Breyton, Cecile
    Caulton, Simon G.
    Chen, James
    Degroux, Seraphine
    Ekiert, Damian C.
    Erlandsen, Benedikte S.
    Freddolino, Peter L.
    Gilzer, Dominic
    Greening, Chris
    Grimes, Jonathan M.
    Grinter, Rhys
    Gurusaran, Manickam
    Hartmann, Marcus D.
    Hitchman, Charlie J.
    Keown, Jeremy R.
    Kropp, Ashleigh
    Kursula, Petri
    Lovering, Andrew L.
    Lemaitre, Bruno
    Lia, Andrea
    Liu, Shiheng
    Logotheti, Maria
    Lu, Shuze
    Markusson, Sigurbjorn
    Miller, Mitchell D.
    Minasov, George
    Niemann, Hartmut H.
    Opazo, Felipe
    Phillips Jr, George N. N.
    Davies, Owen R.
    Rommelaere, Samuel
    Rosas-Lemus, Monica
    Roversi, Pietro
    Satchell, Karla
    Smith, Nathan
    Wilson, Mark A.
    Wu, Kuan-Lin
    Xia, Xian
    Xiao, Han
    Zhang, Wenhua
    Zhou, Z. Hong
    Fidelis, Krzysztof
    Topf, Maya
    Moult, John
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (12) : 1571 - 1599
  • [9] Template-guided method for protein-ligand complex structure prediction: Application to CASP15 protein-ligand studies
    Xu, Xianjin
    Duan, Rui
    Zou, Xiaoqin
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (12) : 1829 - 1836
  • [10] Integrating deep learning, threading alignments, and a multi-MSA strategy for high-quality protein monomer and complex structure prediction in CASP15
    Zheng, Wei
    Wuyun, Qiqige
    Freddolino, Peter L.
    Zhang, Yang
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (12) : 1684 - 1703