Study on the bond performance of glass fiber-reinforced polymer bars considering the relative position between longitudinal bars and stirrups

被引:8
|
作者
Man, Yiqun [1 ,2 ,3 ]
Wang, Tianyou [4 ]
Wang, Zhenyu [5 ]
Wang, Daiyu [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Peoples R China
[2] Minist Ind & Informat Technol, Harbin Inst Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
[4] Univ New South Wales, Sch Mat Sci & Engn, Sydney 2052, Australia
[5] Yantai Univ, Sch Civil Engn, Yantai 264005, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Bond performance; FRP bars; Pull-out tests; Stirrups; Development length; FRP REBARS; GFRP BARS; CONCRETE; STRENGTH; BEHAVIOR;
D O I
10.1016/j.jobe.2023.106478
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Fiber-reinforced polymer (FRP) reinforcements are increasingly recognized as an effective solu-tion to the corrosion problems faced by reinforced concrete structures, and the bond between FRP bars and concrete is an essential basis for the application. Previous research has shown that stirrup restraints on the concrete can significantly enhance the bond performance of middle -arranged longitudinal FRP bars. However, in practical applications, longitudinal bars are typi-cally placed at the corners or sides of stirrups to form reinforcement cages, and there has been limited research on the effects of stirrups on the bond performance of FRP bars under these conditions. To address this gap, this study attempts to further reveal the stirrup effects by varying the relative positions between the longitudinal bars and stirrups. Based on forty-four axial pull-out tests on glass fiber-reinforced polymer (GFRP) bars equipped with Distributed Optical Fiber Sensors (DOFS), the overall and local bond performances of three GFRP bars (sand-coated, helical wound, single helical wrapped) considering four relative positions between the GFRP bars and stirrups (no stirrups, side, middle, corner) were investigated. The test results indicated that the bond strength of FRP bars increased significantly, up to 71.5%, for the relative position of the middle case, but could be reduced by up to 17.5% for the side and corner positions compared with the no-stirrup situation. DOFS proved to be an effective method to obtain the continuous strain distribution and reveal the interfacial bond mechanism. Based on DOFS results, a bond stress-slip model considering the effect of relative positions was developed. Using this model, the devel-opment lengths of GFRP bars were proposed and compared with the ACI, CSA, and JSCE codes.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Performance of Glass Fiber-Reinforced Polymer Bent Bars
    Jeremic, Natasa
    Sheikh, Shamim A.
    ACI STRUCTURAL JOURNAL, 2021, 118 (02) : 273 - 285
  • [2] Torsion Behavior of Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars and Stirrups
    Mohamed, Hamdy M.
    Benmokrane, Brahim
    ACI STRUCTURAL JOURNAL, 2015, 112 (05) : 543 - 552
  • [3] Bond Performance of Basalt Fiber-Reinforced Polymer Bars to Concrete
    El Refai, Ahmed
    Ammar, Mohamed-Amine
    Masmoudi, Radhouane
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2015, 19 (03)
  • [4] Experimental Study on the Bond Performance between Glass-Fiber-Reinforced Polymer (GFRP) Bars and Concrete
    Wang, Bo
    Liu, Gejia
    Miao, He
    BUILDINGS, 2023, 13 (09)
  • [5] Flexural Capacity of Concrete Beams with Basalt Fiber-Reinforced Polymer Bars and Stirrups
    Krassowska, Julita
    Pina Ramirez, Carolina
    MATERIALS, 2022, 15 (22)
  • [6] Investigation of Bond Properties of Alternate Anchorage Schemes for Glass Fiber-Reinforced Polymer Bars
    Vint, Lisa
    Sheikh, Shamim
    ACI STRUCTURAL JOURNAL, 2015, 112 (01) : 59 - 68
  • [7] Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete
    Pour, Sadaf Moallemi
    Alam, M. Shahria
    Milani, Abbas S.
    MATERIALS, 2016, 9 (09):
  • [8] Performance of Lightweight Self-Consolidating Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars without Stirrups under Shear
    Mehany, Shehab
    Mohamed, Hamdy M.
    Benmokrane, Brahim
    ACI STRUCTURAL JOURNAL, 2023, 120 (01) : 17 - 30
  • [9] Experimental study on bond performance between carbon/glass-hybrid-fiber-reinforced polymer bars and concrete
    Liang, Mengmeng
    Yu, Yixun
    Xu, Gaojie
    Li, Qichen
    Pan, Yunfeng
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (04) : 525 - 541
  • [10] Comparative study on the bond performance of near-surface mounted fiber-reinforced polymer bars
    Aljidda, Omar
    El Refai, Ahmed
    Alnahhal, Wael
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 364