Quantitative evaluation of biomechanical properties of optic nerve head by using acoustic radiation force optical coherence elastography

被引:2
|
作者
Shi, Gang [1 ]
Zhang, Yubao [2 ]
Han, Xiao [2 ]
Ai, Sizhu [2 ]
Wang, Yidi [2 ]
Li, Yingji [2 ]
Shi, Jiulin [2 ]
He, Xingdao [2 ]
Zheng, Xinhe [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Key Lab Magnetophotoelect Composite & Int, Sch Math & Phys, Beijing, Peoples R China
[2] Nanchang Hangkong Univ, Key Lab Optoelect Informat Sci & Technol Jiangxi, Jiangxi Engn Lab Optoelect Testing Technol, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
optical coherence tomography; optical coherence elastography; optic never head; biomechanical properties; phase velocity; LAMINA-CRIBROSA; ELASTICITY; DEFORMATION; TOMOGRAPHY; GLAUCOMA; TISSUE;
D O I
10.1117/1.NPh.10.4.045008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Significance: Previous studies have demonstrated that the biomechanical properties of the optic nerve head (ONH) are associated with a variety of ophthalmic diseases; however, they have not been adequately studied. Aim: We aimed to obtain a two-dimensional (2D) velocity distribution image based on the one-to-one correspondence between velocity values and position using the acoustic radiation force optical coherence elastography (ARF-OCE) technique combined with a 2D phase velocity algorithm. Approach: An ARF-OCE system has the advantages of non-invasive detection, high resolution, high sensitivity, and high-speed imaging for quantifying the biomechanical properties of the ONH at different intraocular pressures (IOPs) and detection directions. The 2D phase velocity algorithm is used to calculate the phase velocity values at each position within the imaging region, and then the 2D velocity distribution image is realized by mapping the velocity values to the corresponding structure based on the one-to-one relationship between velocity and position. The elasticity changes can be read directly according to the quantitative relationship between Lamb wave velocity and Young ' s modulus. Results: Our quantitative results show that the phase velocity and Young ' s modulus of the ONH increase by 32.50% and 129.44%, respectively, with increasing IOP, which is in general agreement with the results of previous studies, but they did not produce large fluctuations with the constant change of the ONH direction. These results are consistent with the changes of elastic information in the 2D velocity distribution image. Conclusions: The results suggest that the ARF-OCE technology has great potential in detecting the biomechanical properties of the ONH at different IOPs and directions, and thus may offer the possibility of clinical applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Quantitative Assessment of Biomechanical Properties of the Human Keratoconus Cornea Using Acoustic Radiation Force Optical Coherence Elastography
    Zhao, Yanzhi
    Yang, Hongwei
    Li, Yingjie
    Wang, Yongbo
    Han, Xiao
    Zhu, Yirui
    Zhang, Yubao
    Huang, Guofu
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2022, 11 (06):
  • [2] Quantification for biomechanical properties of human cornea by using acoustic radiation force optical coherence elastography
    Zhao, Yanzhi
    Wang, Yongbo
    Xu, Yueyuan
    Zhang, Yunjiang
    Yang, Hongwei
    Han, Xiao
    Zhu, Yirui
    Zhang, Yubao
    Huang, Guofu
    JOURNAL OF MODERN OPTICS, 2022, 69 (03) : 150 - 159
  • [3] Quantitative Optical Coherence Elastography of the Optic Nerve Head In Vivo
    Zhang, Fengyi
    Li, Runze
    Li, Yan
    Zhu, Zhikai
    Zhou, Qifa
    Chen, Zhongping
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (03) : 732 - 737
  • [4] Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography
    Zhao, Yanzhi
    Zhu, Yirui
    Wang, Yongbo
    Yang, Hongwei
    He, Xingdao
    Alvarez-Arenas, Tomas Gomez
    Li, Yingjie
    Huang, Guofu
    SENSORS, 2023, 23 (01)
  • [5] Quantification of biomechanical properties of human corneal scar using acoustic radiation force optical coherence elastography
    Han, Xiao
    Zhang, Yubao
    Zhu, Yirui
    Zhao, Yanzhi
    Yang, Hongwei
    Liu, Guo
    Ai, Sizhu
    Wang, Yidi
    Xie, Chengfeng
    Shi, Jiulin
    Zhang, Tianyu
    Huang, Guofu
    He, Xingdao
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2022, 247 (06) : 462 - 469
  • [6] Acoustic radiation force optical coherence elastography: A preliminary study on biomechanical properties of trabecular meshwork
    Ai, Sizhu
    Zhang, Yubao
    Shi, Gang
    Wang, Yidi
    Liu, Guo
    Han, Xiao
    Zhao, Yanzhi
    Yang, Hongwei
    He, Xingdao
    JOURNAL OF BIOPHOTONICS, 2023, 16 (05)
  • [7] Multifocal acoustic radiation force-based reverberant optical coherence elastography for evaluation of ocular globe biomechanical properties
    Mekonnen, Taye
    Zevallos-Delgado, Christian
    Singh, Manmohan
    Aglyamov, Salavat R.
    Larin, Kirill V.
    JOURNAL OF BIOMEDICAL OPTICS, 2023, 28 (09)
  • [8] Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method
    Guan, Guangying
    Li, Chunhui
    Ling, Yuting
    Yang, Ying
    Vorstius, Jan B.
    Keatch, Robert P.
    Wang, Ruikang K.
    Huang, Zhihong
    JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (11)
  • [9] Reverberant optical coherence elastography using multifocal acoustic radiation force
    Mekonnen, Taye
    Schill, Alexander W.
    Zevallos-Delgado, Christian
    Singh, Manmohan
    Aglyamov, Salavat R.
    V. Larin, Kirill
    OPTICS LETTERS, 2023, 48 (11) : 2773 - 2776
  • [10] Resonant acoustic radiation force optical coherence elastography
    Qi, Wenjuan
    Li, Rui
    Ma, Teng
    Li, Jiawen
    Shung, K. Kirk
    Zhou, Qifa
    Chen, Zhongping
    APPLIED PHYSICS LETTERS, 2013, 103 (10)