Estimates for Robin p-Laplacian eigenvalues of convex sets with prescribed perimeter

被引:1
|
作者
Amato, Vincenzo [1 ]
Gentile, Andrea [2 ]
Masiello, Alba Lia [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy
[2] Scuola Super Meridionale, Math & Phys Sci Adv Mat & Technol, Largo San Marcellino 10, I-80126 Naples, Italy
关键词
p-Laplacian; Robin boundary conditions; Quantitative estimates; ISOPERIMETRIC INEQUALITY; DOMAINS;
D O I
10.1016/j.jmaa.2023.128002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove an upper bound for the first Robin eigenvalue of the p-Laplacian with a positive boundary parameter and a quantitative version of the reverse Faber-Krahn type inequality for the first Robin eigenvalue of the p-Laplacian with negative boundary parameter, among convex sets with prescribed perimeter. The proofs are based on a comparison argument obtained by means of inner sets, introduced by Payne, Weinberger [32] and Polya [33].(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Estimates for eigenvalues of weighted Laplacian and weighted p-Laplacian
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    HIROSHIMA MATHEMATICAL JOURNAL, 2021, 51 (03) : 335 - 353
  • [2] Higher Robin eigenvalues for the p-Laplacian operator as p approaches 1
    de Lis, Jose C. Sabina
    de Leon, Sergio Segura
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)
  • [3] ON THE ROBIN EIGENVALUES OF THE LAPLACIAN IN THE EXTERIOR OF A CONVEX POLYGON
    Pankrashkin, Konstantin
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (01): : 46 - 56
  • [4] Sharp estimates for the first p-Laplacian eigenvalue and for the p-torsional rigidity on convex sets with holes
    Paoli, Gloria
    Piscitelli, Gianpaolo
    Trani, Leonardo
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [5] Extremal p-Laplacian eigenvalues
    Antunes, Pedro R. S.
    NONLINEARITY, 2019, 32 (12) : 5087 - 5109
  • [6] On the perturbation of eigenvalues for the p-Laplacian
    Melián, JG
    De Lis, JS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (10): : 893 - 898
  • [7] Mixed eigenvalues of p-Laplacian
    Mu-Fa Chen
    Lingdi Wang
    Yuhui Zhang
    Frontiers of Mathematics in China, 2015, 10 : 249 - 274
  • [8] Mixed eigenvalues of p-Laplacian
    Chen, Mu-Fa
    Wang, Lingdi
    Zhang, Yuhui
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (02) : 249 - 274
  • [9] EIGENVALUES OF WEIGHTED p-LAPLACIAN
    Wang, Lihan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (12) : 4357 - 4370
  • [10] On the eigenvalues of the p-Laplacian with varying p
    Huang, YX
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) : 3347 - 3354