Deep learning reconstruction of pressure fluctuations in supersonic shock-boundary layer interaction

被引:9
|
作者
Poulinakis, Konstantinos [1 ]
Drikakis, Dimitris [1 ]
Kokkinakis, Ioannis William [1 ]
Spottswood, S. Michael [2 ]
机构
[1] Univ Nicosia, Inst Adv Modelling & Simulat, CY-2417 Nicosia, Cyprus
[2] Air Force Res Lab, Wright Patterson AFB, OH 45433 USA
关键词
LARGE-EDDY SIMULATION; DIRECT NUMERICAL-SIMULATION; LOW-FREQUENCY UNSTEADINESS; COMPRESSION RAMP; INDUCED SEPARATION; WAVE STRUCTURE; INFLOW DATA; HIGH-ORDER; GENERATION; DYNAMICS;
D O I
10.1063/5.0156444
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The long short-term memory deep-learning model is applied to supersonic shock-boundary layer interaction flow. The study aims to show how near-wall pressure fluctuations can be reconstructed from reduced (under-sampled) datasets of pressure signals. Predicting pressure fluctuations from reduced datasets could allow predictions using less expensive simulations and experiments. The training of the deep learning model is based on direct numerical simulations of supersonic ramp flows, focusing on the regions upstream of and around the shock-boundary layer interaction region. During the pre-processing stage, cubic spline functions increase the fidelity of the sparse signals and feed them to the long-short memory model for an accurate reconstruction. Comparisons are also carried out for different sparsity factors and assess the model's accuracy both qualitatively through the pressure signals and quantitatively using the root mean square error and the power spectra. The deep learning predictions are promising and can be extended to include other aerodynamic or aeroelastic parameters of interest. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Porous Bleed Boundary Conditions for Supersonic Flows With & Without Shock-Boundary Layer Interaction
    Giehler, Julian
    Grenson, Pierre
    Bur, Reynald
    FLOW TURBULENCE AND COMBUSTION, 2023, 111 (04) : 1139 - 1173
  • [2] Porous Bleed Boundary Conditions for Supersonic Flows With & Without Shock-Boundary Layer Interaction
    Julian Giehler
    Pierre Grenson
    Reynald Bur
    Flow, Turbulence and Combustion, 2023, 111 : 1139 - 1173
  • [3] New Shock Detector for Shock-Boundary Layer Interaction
    Liu, Chaoqun
    Oliveira, Maria
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 78 - 87
  • [4] SHOCK-BOUNDARY LAYER INTERACTION IN HYPERSONIC FLOW
    GAILLARD, L
    STORKMANN, V
    GRONIG, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1995, 321 (05): : 183 - 186
  • [5] SHOCK OBLIQUITY EFFECT ON TRANSONIC SHOCK-BOUNDARY LAYER INTERACTION
    INGER, GR
    SOBIECZKY, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (07): : T333 - T335
  • [6] SHOCK-BOUNDARY LAYER INTERACTION AND ENERGETICS IN TRANSONIC FLUTTER
    Karnick, Pradeepa T.
    Venkatraman, Kartik
    JOURNAL OF FLUID MECHANICS, 2017, 832 : 212 - 240
  • [7] EXPERIMENTAL INVESTIGATIONS OF HYPERSONIC SHOCK-BOUNDARY LAYER INTERACTION
    HENCKELS, A
    KREINS, AF
    MAURER, F
    ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN UND WELTRAUMFORSCHUNG, 1993, 17 (02): : 116 - 124
  • [8] IDEALIZED THEORY OF TRANSONIC SHOCK-BOUNDARY LAYER INTERACTION
    INGER, GR
    MASON, WH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (10): : 1144 - 1144
  • [9] Wall pressure fluctuations in transonic shock/boundary layer interaction
    Pirozzoli, Sergio
    Bernardini, Matteo
    IUTAM SYMPOSIUM ON COMPUTATIONAL AERO-ACOUSTICS FOR AIRCRAFT NOISE PREDICTION, 2010, 6 : 303 - 311
  • [10] Shock-boundary layer interaction - Control steady and unsteady results
    Simandirakis, GM
    Papailiou, KD
    COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 340 - 346