Machine learning-based diffusion model for prediction of coronavirus-19 outbreak

被引:21
|
作者
Raheja, Supriya [1 ]
Kasturia, Shreya [1 ]
Cheng, Xiaochun [2 ]
Kumar, Manoj [3 ]
机构
[1] Amity Univ, Dept Comp Sci, Noida, India
[2] Middlesex Univ, Dept Comp Sci, London, England
[3] Univ Petr & Energy Studies, Sch Comp Sci, Dehra Dun, Uttarakhand, India
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 19期
关键词
Coronavirus; Prediction; Diffusion; Support vector machine (SVM); Confirmed cases; Logistic regression (LR); Convolution neural network (CNN); Internet of things (IOT); COVID-19;
D O I
10.1007/s00521-021-06376-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The coronavirus pandemic has been globally impacting the health and prosperity of people. A persistent increase in the number of positive cases has boost the stress among governments across the globe. There is a need of approach which gives more accurate predictions of outbreak. This paper presents a novel approach called diffusion prediction model for prediction of number of coronavirus cases in four countries: India, France, China and Nepal. Diffusion prediction model works on the diffusion process of the human contact. Model considers two forms of spread: when the spread takes time after infecting one person and when the spread is immediate after infecting one person. It makes the proposed model different over other state-of-the art models. It is giving more accurate results than other state-of-the art models. The proposed diffusion prediction model forecasts the number of new cases expected to occur in next 4 weeks. The model has predicted the number of confirmed cases, recovered cases, deaths and active cases. The model can facilitate government to be well prepared for any abrupt rise in this pandemic. The performance is evaluated in terms of accuracy and error rate and compared with the prediction results of support vector machine, logistic regression model and convolution neural network. The results prove the efficiency of the proposed model.
引用
收藏
页码:13755 / 13774
页数:20
相关论文
共 50 条
  • [1] Machine learning-based diffusion model for prediction of coronavirus-19 outbreak
    Supriya Raheja
    Shreya Kasturia
    Xiaochun Cheng
    Manoj Kumar
    Neural Computing and Applications, 2023, 35 : 13755 - 13774
  • [2] A machine learning-based universal outbreak risk prediction tool
    Zhang, Tianyu
    Rabhi, Fethi
    Chen, Xin
    Paik, Hye-young
    Macintyre, Chandini Raina
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [3] Machine learning-based model for prediction of concrete strength
    Aswal, Vivek Singh
    Singh, B. K.
    Maheshwari, Rohit
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (01)
  • [4] Machine learning-based model for prediction of clinical deterioration in hospitalized patients by COVID 19
    Susana Garcia-Gutiérrez
    Cristobal Esteban-Aizpiri
    Iratxe Lafuente
    Irantzu Barrio
    Raul Quiros
    Jose Maria Quintana
    Ane Uranga
    Scientific Reports, 12
  • [5] Supervised Machine Learning-Based Prediction of COVID-19
    Atta-ur-Rahman
    Sultan, Kiran
    Naseer, Iftikhar
    Majeed, Rizwan
    Musleh, Dhiaa
    Gollapalli, Mohammed Abdul Salam
    Chabani, Sghaier
    Ibrahim, Nehad
    Siddiqui, Shahan Yamin
    Khan, Muhammad Adnan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (01): : 21 - 34
  • [6] Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke
    Heo, JoonNyung
    Yoon, Jihoon G.
    Park, Hyungjong
    Kim, Young Dae
    Nam, Hyo Suk
    Heo, Ji Hoe
    STROKE, 2019, 50 (05) : 1263 - 1265
  • [7] Machine Learning-Based Aviation Meteorological Risk Prediction Model
    Miao, Shaohui
    Du, Jiaxing
    SPIN, 2025,
  • [8] Machine learning-based prediction model for the efficacy and safety of statins
    Xiong, Yu
    Liu, Xiaoyang
    Wang, Qing
    Zhao, Li
    Kong, Xudong
    Da, Chunhe
    Meng, Zuohuan
    Qu, Leilei
    Xia, Qinfang
    Liu, Lihong
    Li, Pengmei
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [9] Explainable Machine Learning-Based Prediction Model for Diabetic Nephropathy
    Yin, Jing-Mei
    Li, Yang
    Xue, Jun-Tang
    Zong, Guo-Wei
    Fang, Zhong-Ze
    Zou, Lang
    JOURNAL OF DIABETES RESEARCH, 2024, 2024
  • [10] COVID-19 Outbreak Prediction with Machine Learning
    Ardabili, Sina F.
    Mosavi, Amir
    Ghamisi, Pedram
    Ferdinand, Filip
    Varkonyi-Koczy, Annamaria R.
    Reuter, Uwe
    Rabczuk, Timon
    Atkinson, Peter M.
    ALGORITHMS, 2020, 13 (10)