Babao Dan alleviates gut immune and microbiota disorders while impacting the TLR4/MyD88/NF-?B pathway to attenuate 5-Fluorouracil-induced intestinal injury

被引:30
|
作者
Huang, Bin [1 ,2 ,3 ]
Gui, Mengxuan [2 ]
An, Honglin [3 ]
Shen, Jiayu [3 ]
Ye, Feimin [2 ]
Ni, Zhuona [1 ]
Zhan, Hanzhang [3 ]
Che, Li [4 ]
Lai, Zhicheng [4 ]
Zeng, Jiahan [4 ]
Peng, Jun [1 ,2 ,3 ]
Lin, Jiumao [1 ,2 ,3 ]
机构
[1] Fujian Univ Tradit Chinese Med, Acad Integrat Med, 1 Qiuyang Rd, Fuzhou 350122, Fujian, Peoples R China
[2] Fujian Univ Tradit Chinese Med, Fujian Key Lab Integrat Med Geriatr, Fuzhou 350122, Fujian, Peoples R China
[3] Fujian Univ Tradit Chinese Med, Key Lab Integrat Med Fujian Prov Univ, Fuzhou 350122, Fujian, Peoples R China
[4] Xiamen Tradit Chinese Med Co Ltd, Xiamen 361100, Peoples R China
关键词
Babao Dan; 5-fluorouracil; Intestinal injury; Immune response; Gut microbiota disorder; TLR4/MyD88/NF-kB pathway;
D O I
10.1016/j.biopha.2023.115387
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Adjuvant chemotherapy based on 5-fluorouracil (5-FU), such as FOLFOX, is suggested as a treatment for gastrointestinal cancer. Yet, intestinal damage continues to be a prevalent side effect for which there are no practical prevention measures. We investigated whether Babao Dan (BBD), a Traditional Chinese Medicine, protects against intestinal damage induced by 5-FU by controlling immune response and gut microbiota. 5-FU was injected intraperitoneally to establish the mice model, then 250 mg/kg BBD was gavaged for five days straight. 5-FU led to marked weight loss, diarrhea, fecal blood, and histopathologic intestinal damage. Admin-istration of BBD reduced these symptoms, inhibited proinflammatory cytokine (IL-6, IL-1(i, IFN-& gamma;, TNF-a) secretion, and upregulated the ratio of CD3(+) T cells and the CD4(+)/CD8(+) ratio. According to 16S rRNA sequencing, BBD dramatically repaired the disruption of the gut microbiota caused in a time-dependent way, and increased the Firmicutes/Bacteroidetes (F/B) ratio. Transcriptomic results showed that the mechanism is mainly concentrated on the NF-xB pathway, and we found that BBD reduced the concentration of LPS in the fecal suspension and serum, and inhibited TLR4/MyD88/NF-xB pathway activation. Furthermore, at the genus level on the fifth day, BBD upregulated the abundance of unidentified_Corynebacteriaceae, Aerococcus, Blautia, Jeotga-licoccus, Odoribacter, Roseburia, Rikenella, Intestinimonas, unidentified_Lachnospiraceae, Enterorhabdus, Ruminiclos-tridium, and downregulated the abundance of Bacteroides, Parabacteroides, Parasutterella, Erysipelatoclostridium, which were highly correlated with intestinal injury or the TLR4/MyD88/NF-xB pathway. In conclusion, we established a network involving 5-FU, BBD, the immune response, gut microbiota, and key pathways to explain the pharmacology of oral BBD in preventing 5-FU-induced intestinal injury.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [1] Curcumin alleviates traumatic brain injury induced by gas explosion through modulating gut microbiota and suppressing the LPS/TLR4/MyD88/NF-κB pathway
    Xinwen Dong
    Lvfei Deng
    Yaguang Su
    Xiaofeng Han
    Sanqiao Yao
    Weidong Wu
    Jia Cao
    Linqiang Tian
    Yichun Bai
    Guizhi Wang
    Wenjie Ren
    Environmental Science and Pollution Research, 2024, 31 : 1094 - 1113
  • [2] Curcumin alleviates traumatic brain injury induced by gas explosion through modulating gut microbiota and suppressing the LPS/TLR4/MyD88/NF-κB pathway
    Dong, Xinwen
    Deng, Lvfei
    Su, Yaguang
    Han, Xiaofeng
    Yao, Sanqiao
    Wu, Weidong
    Cao, Jia
    Tian, Linqiang
    Bai, Yichun
    Wang, Guizhi
    Ren, Wenjie
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (01) : 1094 - 1113
  • [3] Phycocyanin Ameliorates Radiation-Induced Acute Intestinal Toxicity by Regulating the Effect of the Gut Microbiota on the TLR4/Myd88/NF-κB Pathway
    Lu, Lina
    Li, Wenjun
    Sun, Chao
    Kang, Shuhe
    Li, Jia
    Luo, Xingping
    Su, Qiong
    Liu, Bin
    Qin, Song
    JOURNAL OF PARENTERAL AND ENTERAL NUTRITION, 2020, 44 (07) : 1308 - 1317
  • [4] Walnut oil alleviates LPS-induced intestinal epithelial cells injury by inhibiting TLR4/MyD88/NF-κB pathway activation
    Miao, Fujun
    Shan, Chunlan
    Ning, Delu
    JOURNAL OF FOOD BIOCHEMISTRY, 2021, 45 (11)
  • [5] Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition
    Xia, Yongjun
    Chen, Yan
    Wang, Guangqiang
    Yang, Yijin
    Song, Xin
    Xiong, Zhiqiang
    Zhang, Hui
    Lai, Phoency
    Wang, Shijie
    Ai, Lianzhong
    JOURNAL OF FUNCTIONAL FOODS, 2020, 67
  • [6] Transcutaneous electrical acupoint stimulation alleviates cerebral ischemic injury through the TLR4/MyD88/NF-κ B pathway
    Wu, Linyu
    Tan, Zixuan
    Su, Lei
    Dong, Fang
    Xu, Guangyu
    Zhang, Feng
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2024, 17
  • [7] Astaxanthin Alleviates Ochratoxin A-Induced Cecum Injury and Inflammation in Mice by Regulating the Diversity of Cecal Microbiota and TLR4/MyD88/NF-κB Signaling Pathway
    Chen, Yueli
    Zhao, Shiwei
    Jiao, Danyang
    Yao, Beibei
    Yang, Shuhua
    Li, Peng
    Long, Miao
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2021, 2021
  • [8] Astragaloside IV alleviates PM2.5-induced lung injury in rats by modulating TLR4/MyD88/NF-κB signalling pathway
    Wu, Yongcan
    Xiao, Wei
    Pei, Caixia
    Wang, Mingjie
    Wang, Xiaomin
    Huang, Demei
    Wang, Fei
    Wang, Zhenxing
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2021, 91
  • [9] Jinzhen Oral Liquid alleviates lipopolysaccharide-induced acute lung injury through modulating TLR4/MyD88/NF-κB pathway
    Li, Ya-Ling
    Qin, Shu-Yan
    Li, Qian
    Song, Shao-Jiang
    Xiao, Wei
    Yao, Guo-Dong
    PHYTOMEDICINE, 2023, 114
  • [10] Phlorizin Alleviates Inflammation Caused by Deoxynivalenol by Regulating the Gut Microbiome and Inhibiting the TLR4/MyD88/NF-κB Signaling Pathway in Mice
    Zhao, Ting
    Jin, Jing
    Huangfu, Bingxin
    He, Xiaoyun
    Zhang, Boyang
    Li, Xiangyang
    Xu, Wentao
    Xing, Fuguo
    ACS FOOD SCIENCE & TECHNOLOGY, 2024, 4 (02): : 333 - 343